Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2005_2_a6, author = {N. Gashitsoi}, title = {On a~criterion of normality for mappings}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {94--98}, publisher = {mathdoc}, number = {2}, year = {2005}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a6/} }
N. Gashitsoi. On a~criterion of normality for mappings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 94-98. https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a6/
[1] Dovbush P. V., “Normal functions of several complex variables”, Vestnic Moskov. Univ., Ser. I, Mat. Mekh., 1981, no. 1, 44–48 (in Russian) | MR | Zbl
[2] Dovbush P. V., “The Lindelöf theorem in $\mathbb{C}^n$”, Vestnic Moskov. Univ., Ser. I, Mat. Mekh., 1981, no. 6, 33–36 (in Russian) | MR | Zbl
[3] Dovbush P. V., $X$-normal mappings, Thesis of doctor habilitat, Chishinau, 2004 (in Romanian) | MR
[4] Marty F., “Recerches sur la répartition des valeurs d'une function méromorphe”, Ann. Fac. Sci. Univ. Toulouse, 28:3 (1931), 183–261 | MR
[5] Hahn K. T., “Asymptotic behavior of normal mappings of several complex variables”, Canad. J. Math., 36:4 (1984), 718–746 | MR | Zbl
[6] Cima J. A., Krantz S. G., “The Lindelöf principle and normal functions of several complex variables”, Duke Math. J., 50 (1983), 303–328 | DOI | MR | Zbl
[7] Paletskii E. A., Shabat B. V., “Invariant metrics”, Several complex variables, III, Encyclopaedia of Mathematical Science, 9, ed. G. M. Khenkin, Springer, Berlin, 1989, 63–111
[8] Lempert L., “La metrique Kobayashi et les representation des domanes sur la boule”, Bull. Soc. Math. France, 109 (1981), 427–474 | MR | Zbl
[9] Rudin W., Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer-Verlag, Berlin, 1980 | MR | Zbl