On a~criterion of normality for mappings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 94-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a criterion of normality for mappings on complex manifolds of a special form.
@article{BASM_2005_2_a6,
     author = {N. Gashitsoi},
     title = {On a~criterion of normality for mappings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {94--98},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a6/}
}
TY  - JOUR
AU  - N. Gashitsoi
TI  - On a~criterion of normality for mappings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 94
EP  - 98
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a6/
LA  - en
ID  - BASM_2005_2_a6
ER  - 
%0 Journal Article
%A N. Gashitsoi
%T On a~criterion of normality for mappings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 94-98
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a6/
%G en
%F BASM_2005_2_a6
N. Gashitsoi. On a~criterion of normality for mappings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 94-98. https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a6/

[1] Dovbush P. V., “Normal functions of several complex variables”, Vestnic Moskov. Univ., Ser. I, Mat. Mekh., 1981, no. 1, 44–48 (in Russian) | MR | Zbl

[2] Dovbush P. V., “The Lindelöf theorem in $\mathbb{C}^n$”, Vestnic Moskov. Univ., Ser. I, Mat. Mekh., 1981, no. 6, 33–36 (in Russian) | MR | Zbl

[3] Dovbush P. V., $X$-normal mappings, Thesis of doctor habilitat, Chishinau, 2004 (in Romanian) | MR

[4] Marty F., “Recerches sur la répartition des valeurs d'une function méromorphe”, Ann. Fac. Sci. Univ. Toulouse, 28:3 (1931), 183–261 | MR

[5] Hahn K. T., “Asymptotic behavior of normal mappings of several complex variables”, Canad. J. Math., 36:4 (1984), 718–746 | MR | Zbl

[6] Cima J. A., Krantz S. G., “The Lindelöf principle and normal functions of several complex variables”, Duke Math. J., 50 (1983), 303–328 | DOI | MR | Zbl

[7] Paletskii E. A., Shabat B. V., “Invariant metrics”, Several complex variables, III, Encyclopaedia of Mathematical Science, 9, ed. G. M. Khenkin, Springer, Berlin, 1989, 63–111

[8] Lempert L., “La metrique Kobayashi et les representation des domanes sur la boule”, Bull. Soc. Math. France, 109 (1981), 427–474 | MR | Zbl

[9] Rudin W., Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer-Verlag, Berlin, 1980 | MR | Zbl