Lie algebras of the operators and three-dimensional polynomial differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 51-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The defining equations are built for the representation of continuous groups in the space of variables and coefficients of multi-dimensional polynomial differential systems of the first order. Lie theorem on integrating factor is obtained for three-dimensional polynomial differential systems and the invariant GL(3,R)-integrals are constructed for three-dimensional affine differential system.
@article{BASM_2005_2_a2,
     author = {Natalia Gherstega and Mihail Popa},
     title = {Lie algebras of the operators and three-dimensional polynomial differential systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {51--64},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a2/}
}
TY  - JOUR
AU  - Natalia Gherstega
AU  - Mihail Popa
TI  - Lie algebras of the operators and three-dimensional polynomial differential systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 51
EP  - 64
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a2/
LA  - en
ID  - BASM_2005_2_a2
ER  - 
%0 Journal Article
%A Natalia Gherstega
%A Mihail Popa
%T Lie algebras of the operators and three-dimensional polynomial differential systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 51-64
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a2/
%G en
%F BASM_2005_2_a2
Natalia Gherstega; Mihail Popa. Lie algebras of the operators and three-dimensional polynomial differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 51-64. https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a2/

[1] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Shtiintsa, Kishinev, 1982 (in Russian) ; 1988 (in English) | MR | Zbl

[2] Popa M. N., Algebraic methods for differential systems, Seria Matematică Aplicată şi Industrială, 15, Editura the Flower Power, Universitatea din Piteşti, 2004 (in Romanian) | MR | Zbl

[3] Academic Press, 1982 | MR | Zbl

[4] Stepanov V. V., Course of differential equations, Moscow, 1950 (in Russian)

[5] Rashevsky P. K., Geometrical theory of partial differential equations, Moscow, 1947 (in Russian)

[6] Gherstega N. N., Popa M. N., “Mixed comitants and $GL(3,R)$-orbit's dimensions for the three-dimensional differential systems”, Buletin Ştiinţific Universitatea din Piteşti, Seria Matematică şi Informatică, 2003, no. 9, 149–154

[7] Noordhoff, 1964 | MR | Zbl