Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2005_2_a2, author = {Natalia Gherstega and Mihail Popa}, title = {Lie algebras of the operators and three-dimensional polynomial differential systems}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {51--64}, publisher = {mathdoc}, number = {2}, year = {2005}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a2/} }
TY - JOUR AU - Natalia Gherstega AU - Mihail Popa TI - Lie algebras of the operators and three-dimensional polynomial differential systems JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2005 SP - 51 EP - 64 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a2/ LA - en ID - BASM_2005_2_a2 ER -
%0 Journal Article %A Natalia Gherstega %A Mihail Popa %T Lie algebras of the operators and three-dimensional polynomial differential systems %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2005 %P 51-64 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a2/ %G en %F BASM_2005_2_a2
Natalia Gherstega; Mihail Popa. Lie algebras of the operators and three-dimensional polynomial differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2005), pp. 51-64. https://geodesic-test.mathdoc.fr/item/BASM_2005_2_a2/
[1] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Shtiintsa, Kishinev, 1982 (in Russian) ; 1988 (in English) | MR | Zbl
[2] Popa M. N., Algebraic methods for differential systems, Seria Matematică Aplicată şi Industrială, 15, Editura the Flower Power, Universitatea din Piteşti, 2004 (in Romanian) | MR | Zbl
[3] Academic Press, 1982 | MR | Zbl
[4] Stepanov V. V., Course of differential equations, Moscow, 1950 (in Russian)
[5] Rashevsky P. K., Geometrical theory of partial differential equations, Moscow, 1947 (in Russian)
[6] Gherstega N. N., Popa M. N., “Mixed comitants and $GL(3,R)$-orbit's dimensions for the three-dimensional differential systems”, Buletin Ştiinţific Universitatea din Piteşti, Seria Matematică şi Informatică, 2003, no. 9, 149–154