On geometrical properties of the spaces defined by the Pfaff equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 69-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Geometrical properties of holonomic and non holonomic varieties defined by the Pfaff equations connected with the first order system of equations are studied. The Riemann extensions of affine connected spaces for investigations of geodesics and asymptotic lines are used.
@article{BASM_2005_1_a5,
     author = {Valery Driuma},
     title = {On geometrical properties of the spaces defined by the {Pfaff} equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {69--84},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a5/}
}
TY  - JOUR
AU  - Valery Driuma
TI  - On geometrical properties of the spaces defined by the Pfaff equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 69
EP  - 84
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a5/
LA  - en
ID  - BASM_2005_1_a5
ER  - 
%0 Journal Article
%A Valery Driuma
%T On geometrical properties of the spaces defined by the Pfaff equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 69-84
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a5/
%G en
%F BASM_2005_1_a5
Valery Driuma. On geometrical properties of the spaces defined by the Pfaff equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 69-84. https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a5/

[1] Sintsov D. M., Raboty po negolonomnoi geometrii, Kiev, 1972 | MR

[2] Sluchaev V. V., Geometriya vektornyh polei, Izd. Tomskogo universiteta, Tomsk, 1982

[3] Aminov Yu. A., Geometriya vektornogo polya, Nauka, Moskva, 1990 | MR

[4] Dryuma V., “The Riemann Extensions in theory of differential equations and their applications”, Matematicheskaya fizika, analiz, geometriya, 10:3 (2003), 1–19 | MR

[5] Dryuma V., “The Riemann and Einstein-Weyl geometries in the theory of ODE's, their applications and all that”, New Trends in Integrability and Partial Solvability, eds. A. B. Shabat et al., Kluwer Academic Publishers, 115–156 | MR | Zbl

[6] Dryuma V., “Applications of Riemannian and Einstein-Weyl Geometry in the theory of second order ordinary differential equations”, Theoretical and Mathematical Physics, 128:1 (2001), 845–855 | DOI | MR | Zbl