Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2005_1_a5, author = {Valery Driuma}, title = {On geometrical properties of the spaces defined by the {Pfaff} equations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {69--84}, publisher = {mathdoc}, number = {1}, year = {2005}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a5/} }
TY - JOUR AU - Valery Driuma TI - On geometrical properties of the spaces defined by the Pfaff equations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2005 SP - 69 EP - 84 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a5/ LA - en ID - BASM_2005_1_a5 ER -
Valery Driuma. On geometrical properties of the spaces defined by the Pfaff equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 69-84. https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a5/
[1] Sintsov D. M., Raboty po negolonomnoi geometrii, Kiev, 1972 | MR
[2] Sluchaev V. V., Geometriya vektornyh polei, Izd. Tomskogo universiteta, Tomsk, 1982
[3] Aminov Yu. A., Geometriya vektornogo polya, Nauka, Moskva, 1990 | MR
[4] Dryuma V., “The Riemann Extensions in theory of differential equations and their applications”, Matematicheskaya fizika, analiz, geometriya, 10:3 (2003), 1–19 | MR
[5] Dryuma V., “The Riemann and Einstein-Weyl geometries in the theory of ODE's, their applications and all that”, New Trends in Integrability and Partial Solvability, eds. A. B. Shabat et al., Kluwer Academic Publishers, 115–156 | MR | Zbl
[6] Dryuma V., “Applications of Riemannian and Einstein-Weyl Geometry in the theory of second order ordinary differential equations”, Theoretical and Mathematical Physics, 128:1 (2001), 845–855 | DOI | MR | Zbl