Some new exact solutions for the lineal flow of a~non-Newtonian fluid
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 35-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the unsteady lineal flows of a second grade fluid and of a Maxwell one, between parallel plates, are investigated. The velocity fields corresponding to the flow induced by a constantly accelerating plate as well as those for the flow caused by the impulsive motion of the plate are determined. The solutions that have been obtained satisfy the associate partial differential equations and all imposed initial and boundary conditions. They also reduce to those for Newtonian fluids as limiting cases. Finally, some conclusions and illustrative comparisons are also presented.
@article{BASM_2005_1_a3,
     author = {Corina Fetecau and Florina-Liliana Buzescu and Constantin Fetecau},
     title = {Some new exact solutions for the lineal flow of {a~non-Newtonian} fluid},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {35--42},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a3/}
}
TY  - JOUR
AU  - Corina Fetecau
AU  - Florina-Liliana Buzescu
AU  - Constantin Fetecau
TI  - Some new exact solutions for the lineal flow of a~non-Newtonian fluid
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 35
EP  - 42
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a3/
LA  - en
ID  - BASM_2005_1_a3
ER  - 
%0 Journal Article
%A Corina Fetecau
%A Florina-Liliana Buzescu
%A Constantin Fetecau
%T Some new exact solutions for the lineal flow of a~non-Newtonian fluid
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 35-42
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a3/
%G en
%F BASM_2005_1_a3
Corina Fetecau; Florina-Liliana Buzescu; Constantin Fetecau. Some new exact solutions for the lineal flow of a~non-Newtonian fluid. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 35-42. https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a3/

[1] Rivlin R. S., Ericksen J. L., “Stress deformation relations for isotropic materials”, J. Rat. Mech. Anal., 4 (1955), 323–425 | MR | Zbl

[2] Truesdell C., Noll W., The Non-Linear Field Theories of Mechanics, Springer, New York, 1992 | MR

[3] Dunn J. E., Rajagopal K. R., “Fluids of differential type: critical review and thermodynamics analysis”, Int. J. Engng. Sci., 33:4 (1995), 689–728 | DOI | MR

[4] Oldroyd J. G., “On the formulation of rheological equations of state”, Proc. Roy. Soc. London Ser., A200 (1950), 53–65 | MR

[5] Rajagopal K. R., “Mechanics of non-Newtonian fluids”, Recent developments in theoretical fluids mechanics, Pitman Research Notes in Mathematics, 291, Longman, New York, 1993, 129–162 | MR | Zbl

[6] Böhme G., Strömungsmechanik nicht-newtonscher Fluide, B. G. Teubner, Stuttgart–Leipzig–Wiesbaden, 2000 | MR | Zbl

[7] Rajagopal K. R., Srinivasa A. R., “A thermodynamic framework for rate type fluid models”, J. Non-Newton. Fluid. Mech., 88 (2000), 207–227 | DOI | Zbl

[8] Bandelli R., Rajagopal K. R., “Start-up flows of second grade fluids in domains with one finite dimension”, Int. J. Non-Linear Mech., 30:6 (1995), 817–839 | DOI | MR | Zbl

[9] Bandelli R., Rajagopal K. R., Galdi G. P., “On some unsteady motions of fluids of second grade”, Arch. Mech., 47:4 (1995), 661–676 | MR | Zbl

[10] Fetecau C., Fetecau C., “A new exact solution for the flow of a Maxwell fluid past an infinite plate”, Int. J. Non-Linear Mech., 38:3 (2003), 423–427 | DOI | MR | Zbl

[11] Sneddon I. N., Fourier transforms, McGraw-Hill Book Company, New York–Toronto–London, 1951 | MR

[12] Schlichting H., Boundary-layer Theory, McGraw-Hill, New York, 1979 | MR | Zbl