Optimal multicommodity flows in dynamic networks and algorithms for their finding
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 19-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study two basic problems related to dynamic flows: maximum multicommodity flow and the minimum cost multicommodity flow problems. We consider these problems on dynamic networks with time-varying capacities of edges. For minimum cost multicommodity flow problem we assume that cost functions, defined on edges, are nonlinear and depending on time and flow, and the demand function also depends on time. We propose algorithms for solving these dynamic problems, which are based on their reducing to static ones on a time-expanded network.
@article{BASM_2005_1_a2,
     author = {M. Fonoberova and D. Lozovanu},
     title = {Optimal multicommodity flows in dynamic networks and algorithms for their finding},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {19--34},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a2/}
}
TY  - JOUR
AU  - M. Fonoberova
AU  - D. Lozovanu
TI  - Optimal multicommodity flows in dynamic networks and algorithms for their finding
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 19
EP  - 34
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a2/
LA  - en
ID  - BASM_2005_1_a2
ER  - 
%0 Journal Article
%A M. Fonoberova
%A D. Lozovanu
%T Optimal multicommodity flows in dynamic networks and algorithms for their finding
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 19-34
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a2/
%G en
%F BASM_2005_1_a2
M. Fonoberova; D. Lozovanu. Optimal multicommodity flows in dynamic networks and algorithms for their finding. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 19-34. https://geodesic-test.mathdoc.fr/item/BASM_2005_1_a2/

[1] Aronson J., “A survey of dynamic network flows”, Ann. Oper. Res., 20 (1989), 1–66 | DOI | MR | Zbl

[2] Assad A., “Multicommodity network flows: A survey”, Networks, 8 (1978), 37–92 | DOI | MR

[3] Castro J., Nabona N., “An implementation of linear and nonlinear multicommodity network flows”, European Journal of Operational Research Theory and Methodology, 92 (1996), 37–53 | DOI | Zbl

[4] Castro J., “A specialized interior-point algorithm for multicommodity network flows”, Siam J. Optim., 10:3 (2000), 852–877 | DOI | MR | Zbl

[5] Castro J., “Solving Difficult Multicommodity Problems with a Specialized Interior-Point Algorithm”, Annals of Operations Research, 124 (2003), 35–48 | DOI | MR | Zbl

[6] Fleisher L., “Approximating multicommodity flow independent of the number of commodities”, Siam J. Discrete Math., 13:4 (2000), 505–520 | DOI | MR

[7] Ford L., Fulkerson D., Flows in Networks, Princeton University Press, Princeton, NJ, 1962 | MR | Zbl

[8] Goldberg A., Tarjan R., “A New Approach to the Maximum-Flow Problem”, Journal of the Association for Computing Machinery, 35:4 (1988), 921–940 | MR | Zbl

[9] Kumar S., Gupta P., “An Incremental Algorithm for the Maximum Flow Problem”, Journal of Mathematical Modelling and Algorithms, 2 (2003), 1–16 | DOI | MR

[10] Lozovanu D., Stratila D., “The minimum-cost flow problem on dynamic networks and algorithm for its solving”, Bul. Acad. Sţiinţe Repub. Mold., Matematica, 2001, no. 3(37), 38–56 | MR | Zbl

[11] Lozovanu D., Stratila D., “Optimal flow in dynamic networks with nonlinear cost functions on edges”, Analysis and optimization of differential systems, eds. V. Barbu, I. Lesiencko, Kluwer Academic Publissers, 2003, 247–258, ISBN 1-4020-7439-5 | MR | Zbl

[12] Lozovanu D., Pickl S., “A special dynamic programming technique for multiobjective discrete control and for dynamic games on graph-based methods”, CTWO4 Workshop on Graphs and Combinatorial Optimization (Milano, 2004), 184–188

[13] Mazzoni G., Pallottino S., Scutella M., “The maximum flow problem: A max-preflow approach”, European Journal of Operational Research, 53 (1991), 257–278 | DOI | Zbl