Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2004_3_a7, author = {Yu. L. Bondar and A. P. Sadovskii}, title = {Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {71--90}, publisher = {mathdoc}, number = {3}, year = {2004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a7/} }
TY - JOUR AU - Yu. L. Bondar AU - A. P. Sadovskii TI - Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2004 SP - 71 EP - 90 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a7/ LA - en ID - BASM_2004_3_a7 ER -
%0 Journal Article %A Yu. L. Bondar %A A. P. Sadovskii %T Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2004 %P 71-90 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a7/ %G en %F BASM_2004_3_a7
Yu. L. Bondar; A. P. Sadovskii. Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 71-90. https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a7/
[1] Kukles I. S., “About some cases of difference between focal and center”, Rep. of A.S. USSR, 42:5 (1944), 208–211 (in Russian)
[2] Cherkas L. A., “Center conditions for the equation $yy'=\sum\limits_{i=0}^3p_i(x)y^i$”, Diff. Equations, 14:9 (1978), 1594–1600 (in Russian) | MR | Zbl
[3] Sadovskii A. P., “To the conditions of center and focal for the equations of nonlinear oscillations”, Diff. Equations, 15:9 (1979), 1716–1719 (in Russian) | MR
[4] Christopher C. J., Lloyd N. G., “On the paper of Jin and Wang concerning the conditions for a centre in certain cubic systems”, Bull. London Math Soc., 22:1 (1990), 5–12 | DOI | MR | Zbl
[5] Suba A. S., “On center conditions of Kukles and Cherkas for one cubic system”, Diff. Equations, 29:4 (1993), 728–730 (in Russian) | MR
[6] Lloyd N. G., Pearson J. M., “Conditions for a center and the bifurcation of limit cycles in a class of cubic system”, Bifurcations of Planar vector fields, Lecture Notes in Math., 1455, Springer, Berlin, 1990, 230–242 | MR
[7] Sadovskii A. P., “On limit cicles for cubic system of nonlinear oscillations”, Diff. Equations, 29:2 (1993), 226–231 (in Russian) | MR
[8] Sadovskii A. P., “On center conditions for one cubic system of differential equations”, Diff. Equations, 36:1 (2000), 98–102 (in Russian) | MR | Zbl
[9] Lloyd N. G., Pearson J. M., “Computing centre condition for certain cubic systems”, J. Comp. Appl. Math., 40:2 (1992), 323–336 | DOI | MR | Zbl
[10] Cherkas L. A., “On one sign of difference between center and focal for Lienard equation”, Rep. of A.S. BSSR, 22:11 (1978), 969–970 (in Russian) | MR | Zbl
[11] Amelkin V. V., Lukashevichi N. A., Nonlinear oscillations in the systems of second order, Minsk, 1982 (in Russian)
[12] Sadovskii A. P., “Solution of the problem of center and focal for the cubic system on nonlinear oscillations”, Diff. Equations, 33:2 (1997), 236–244 (in Russian) | MR
[13] Sadovskii A. P., “Cubic systems of nonlinear oscillations with seven limit cicles”, Diff. Equations, 39:4 (2003), 472–481 (in Russian) | MR
[14] Suba A., Cosma D., “Solution of the problem of the centre for cubic differential system with three invariant straight lines two of which are parallel”, Buletinul A. S. a R.M., Matematica, 2001, no. 2(36), 75–86 | MR | Zbl
[15] Zoladek H., “The classification of reversible cubic systems with center”, Topological methods in nonlinear analysis, Journal of the Juliusz Schauder Center, 4:1 (1994), 79–136 | MR | Zbl
[16] Kox D., Little J., O'Shi D., Ideals, manifolds and algorithms. Introduction in computer aspects of algebraic geometry and commutative algebra, Moscow, 2000 (in Russian)