Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 71-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work for the system x˙=y(1+Dx+Px2), y˙=x+Ax2+3Bxy+Cy2+Kx3+3Lx2y+Mxy2+Ny3 25 cases are given when the point O(0,0) is a center. We also consider a system of the form x˙=yP0(x), y˙=x+P2(x)y2+P3(x)y3, for which 35 cases of a center are shown. We prove the existence of systems of the form x˙=y(1+Dx+Px2), y˙=x+λy+Ax2+Cy2+Kx3+3Lx2y+Mxy2+Ny3 with eight limit cycles in the neighborhood of the origin of coordinates.
@article{BASM_2004_3_a7,
     author = {Yu. L. Bondar and A. P. Sadovskii},
     title = {Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {71--90},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a7/}
}
TY  - JOUR
AU  - Yu. L. Bondar
AU  - A. P. Sadovskii
TI  - Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 71
EP  - 90
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a7/
LA  - en
ID  - BASM_2004_3_a7
ER  - 
%0 Journal Article
%A Yu. L. Bondar
%A A. P. Sadovskii
%T Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 71-90
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a7/
%G en
%F BASM_2004_3_a7
Yu. L. Bondar; A. P. Sadovskii. Variety of the center and limit cycles of a~cubic system, which is reduced to lienard form. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 71-90. https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a7/

[1] Kukles I. S., “About some cases of difference between focal and center”, Rep. of A.S. USSR, 42:5 (1944), 208–211 (in Russian)

[2] Cherkas L. A., “Center conditions for the equation $yy'=\sum\limits_{i=0}^3p_i(x)y^i$”, Diff. Equations, 14:9 (1978), 1594–1600 (in Russian) | MR | Zbl

[3] Sadovskii A. P., “To the conditions of center and focal for the equations of nonlinear oscillations”, Diff. Equations, 15:9 (1979), 1716–1719 (in Russian) | MR

[4] Christopher C. J., Lloyd N. G., “On the paper of Jin and Wang concerning the conditions for a centre in certain cubic systems”, Bull. London Math Soc., 22:1 (1990), 5–12 | DOI | MR | Zbl

[5] Suba A. S., “On center conditions of Kukles and Cherkas for one cubic system”, Diff. Equations, 29:4 (1993), 728–730 (in Russian) | MR

[6] Lloyd N. G., Pearson J. M., “Conditions for a center and the bifurcation of limit cycles in a class of cubic system”, Bifurcations of Planar vector fields, Lecture Notes in Math., 1455, Springer, Berlin, 1990, 230–242 | MR

[7] Sadovskii A. P., “On limit cicles for cubic system of nonlinear oscillations”, Diff. Equations, 29:2 (1993), 226–231 (in Russian) | MR

[8] Sadovskii A. P., “On center conditions for one cubic system of differential equations”, Diff. Equations, 36:1 (2000), 98–102 (in Russian) | MR | Zbl

[9] Lloyd N. G., Pearson J. M., “Computing centre condition for certain cubic systems”, J. Comp. Appl. Math., 40:2 (1992), 323–336 | DOI | MR | Zbl

[10] Cherkas L. A., “On one sign of difference between center and focal for Lienard equation”, Rep. of A.S. BSSR, 22:11 (1978), 969–970 (in Russian) | MR | Zbl

[11] Amelkin V. V., Lukashevichi N. A., Nonlinear oscillations in the systems of second order, Minsk, 1982 (in Russian)

[12] Sadovskii A. P., “Solution of the problem of center and focal for the cubic system on nonlinear oscillations”, Diff. Equations, 33:2 (1997), 236–244 (in Russian) | MR

[13] Sadovskii A. P., “Cubic systems of nonlinear oscillations with seven limit cicles”, Diff. Equations, 39:4 (2003), 472–481 (in Russian) | MR

[14] Suba A., Cosma D., “Solution of the problem of the centre for cubic differential system with three invariant straight lines two of which are parallel”, Buletinul A. S. a R.M., Matematica, 2001, no. 2(36), 75–86 | MR | Zbl

[15] Zoladek H., “The classification of reversible cubic systems with center”, Topological methods in nonlinear analysis, Journal of the Juliusz Schauder Center, 4:1 (1994), 79–136 | MR | Zbl

[16] Kox D., Little J., O'Shi D., Ideals, manifolds and algorithms. Introduction in computer aspects of algebraic geometry and commutative algebra, Moscow, 2000 (in Russian)