Stability and fold bifurcation in a~system of two coupled demand-supply models
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 53-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of two coupled demand-supply systems, depending on 4 parameters is considered. We found that the dynamical system associated with this model may have at most two symmetric and at most two nonsymmetric equilibria as the parameters vary. The topological type of equilibria is established and the locus in the parameter space of the values corresponding to nonhyperbolic equilibria is determined. We found that the nonhyperbolic singularities can be of fold, Hopf, double-zero (Bogdanov–Takens) or fold-Hopf type. In addition, the fold bifurcation is studied using the normal form method and the center manifold theory.
@article{BASM_2004_3_a5,
     author = {Mihaela Sterpu and Carmen Roc\c{s}oreanu},
     title = {Stability and fold bifurcation in a~system of two coupled demand-supply models},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {53--62},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a5/}
}
TY  - JOUR
AU  - Mihaela Sterpu
AU  - Carmen Rocşoreanu
TI  - Stability and fold bifurcation in a~system of two coupled demand-supply models
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 53
EP  - 62
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a5/
LA  - en
ID  - BASM_2004_3_a5
ER  - 
%0 Journal Article
%A Mihaela Sterpu
%A Carmen Rocşoreanu
%T Stability and fold bifurcation in a~system of two coupled demand-supply models
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 53-62
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a5/
%G en
%F BASM_2004_3_a5
Mihaela Sterpu; Carmen Rocşoreanu. Stability and fold bifurcation in a~system of two coupled demand-supply models. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 53-62. https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a5/

[1] Beckmann M., Ryder H., “Simultaneous price and quantity adjustment in a single market”, Econometrica, 37 (1969), 470–484 | DOI

[2] Marshall A., Principles of Economics, Mac Millan, London, 1890 | Zbl

[3] Samuelson P. A., Nordhaus W., Economie politica, Teora, 2000 | Zbl

[4] Tu P., Dynamical systems. An introduction with applications in economics and biology, Springer, Berlin, 1994 | MR

[5] Georgescu C., Contributions to the study of some o.d.e's from economy, PhD Thesis, Univ. of Piteşti, 2004 (in Romanian) | Zbl

[6] Campbell Sue Ann, Waite M., “Multistability in coupled FitzHugh-Nagumo oscillators”, Nonlinear Analysis, 47 (2001), 1093–1104 | DOI | MR | Zbl

[7] Volkov E., Romanov V., “Bifurcations in the system of two identical diffusively coupled Brusselators”, Physica Scripta, 51 (1995), 19–28 | DOI

[8] Rocşoreanu C., Sterpu M., “Nonhyperbolic singularities in a system of two coupled oscillators”, Proc. of 11th Conf. Appl. Ind. Math., CAIM 2003 (University of Oradea, Romania), 2003, 195–201

[9] Sterpu M., Rocşoreanu C., “Hopf bifurcation in a system of two symmetrically coupled advertising oscillators”, Nonlinear Analysis: Real World Application, 6 (2005), 1–2 | DOI | MR

[10] Kuznetsov Yu., Elements of applied bifurcation theory, Springer, New York, 1995 | MR

[11] Wolfram S., Mathematica-$A$ system for doing mathematics by computer, Wolfram Research Inc., 1994