Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2004_3_a4, author = {D. Cheban and C. Mammana}, title = {Asymptotic {Stability} of autonomous and {Non-Autonomous} {Discrete} {Linear} {Inclusions}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {41--52}, publisher = {mathdoc}, number = {3}, year = {2004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a4/} }
TY - JOUR AU - D. Cheban AU - C. Mammana TI - Asymptotic Stability of autonomous and Non-Autonomous Discrete Linear Inclusions JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2004 SP - 41 EP - 52 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a4/ LA - en ID - BASM_2004_3_a4 ER -
%0 Journal Article %A D. Cheban %A C. Mammana %T Asymptotic Stability of autonomous and Non-Autonomous Discrete Linear Inclusions %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2004 %P 41-52 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a4/ %G en %F BASM_2004_3_a4
D. Cheban; C. Mammana. Asymptotic Stability of autonomous and Non-Autonomous Discrete Linear Inclusions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 41-52. https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a4/
[1] Artzrouni M., “On the Convergence of Infinite Products of Matrices”, Linear Algebra and its Applications, 74 (1986), 11–21 | DOI | MR | Zbl
[2] Barabanov N. E., “Lyapunov indicator of discrete inclusions. I; II; III”, Autom. Remote Control, 49 (1988), 152–157 ; 283–287 ; 558–565 | MR | Zbl | MR | Zbl | MR | Zbl
[3] Beyn W.-J., Elsner L., “Infinite Products and Paracontracting Matrices”, The Electronic Journal of Linear Algebra, 2 (1997), 1–8 | MR | Zbl
[4] Bronstein I. U., Nonautonomous Dynamical Systems, Stiintsa, Chişinău, 1984 (in Russian)
[5] Bru R., Elsner L., Neumann M., “Convergence of Infinite Products of Matrices and Inner-Outer Iteration Schemes”, Electronic Transactions on Numerical Analysis, 2 (1994), 183–194 | MR
[6] Cheban D. N., Fakeeh D. S., Global Attractors of Disperse Dynamical Systems, Sigma, Chişinău, 1994
[7] Cheban D. N., Fakeeh D. S., “Global Attractors of Infinite-Dimensional Dynamical Systems, III”, Bulletin of Academy of Sciences of Republic of Moldova, Mathematics, 1995, no. 2-3(18-19), 3–13 | MR | Zbl
[8] Mathematical Notes, 63:1 (1998), 115–126 | MR | Zbl
[9] Cheban D. N., Global Attractors of Nonautonomous Dynamical Systems, State University of Moldova, Chişinău, 2002 (in Russia)
[10] Cheban D. N., Global Attractors of Nonautonomous Dissipative Dynamical Systems, World Scientific (to appear)
[11] Clement Ph., Heijman J., Angement S., C. Van Dujin C., De Pagter P., One-Parameter Semigroups, CWI Monograph, 5, North-Holland, Amsterdam–New York–Oxford–Tokyo, 1987 | MR | Zbl
[12] Daubechies I., Lagarias J. C., “Sets of Matrices All Infnite Products of Which Converge”, Linear Algebra Appl., 161 (1992), 227–263 | DOI | MR | Zbl
[13] Elsner L., Friedland S., “Norm Conditions for Convergence of Infinite Products”, Linear Algebra Appl., 250 (1997), 133–142 | DOI | MR | Zbl
[14] Elsner L., Koltracht I., Neumann M., “On the Convergence of Asynchronous Paracontractions with Applications to Tomographic Reconstruction from Incomplete Data”, Linear Algebra Appl., 130 (1990), 65–82 | DOI | MR | Zbl
[15] Gurvits L., Geometrical Approach to Some Problems of Control, Observation and Lumping, PhD. Thesis, Dept. of Mathematics, Gorky State Univ., USSR, 1985
[16] Gurvits L. N., Zaharin A. M., “System Theoretic and Graph Theoretic Aspects of Markov Chains Lumping”, 5th International Conference on Mathematical Statistics, Vilnius, 1989 | Zbl
[17] Gurvits L. N., Zaharin A. M., Lumpability of Markov Processes and Systems Theory, MTNS, Amsterdam, 1989
[18] Gurvits L., “Stability of Discrete Linear Inclusion”, Linear Algebra and its Applications, 231 (1995), 47–85 | MR | Zbl
[19] Hale J. K., Asymptotic Behaviour of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988
[20] Husemoller D., Fibre Bundles, Springer-Verlag, Berlin–Heidelberg–New York, 1994 | MR
[21] Kelley J., General Topology, D. Van Norstand Company Inc., Toronto–New York–London, 1957 | MR
[22] Kozyakin V. S., “Algebric insolvability of problem of absolute stability of desynchronized systems”, Autom. Rem. Control, 1990, no. 51(6), 754–759 | MR | Zbl
[23] Molchanov A. P., “Lyapunov function for nonlinear discrete-time control systems”, Avtomat. i Telemekh., 6 (1987), 26–35 | MR | Zbl
[24] Opoitsev V. I., “Stability of nonautonomous systems”, Avtomat. i Telemekh., 1986, no. 10, 56–63 | MR
[25] Robinson C., Dynamical Systems: Stabilty, Symbolic Dynamics and Chaos, Studies in Advanced Mathematics, CRC Press, Boca Raton Florida, 1995 | MR
[26] Rota G. C., Strang W. G., “A Note on the Joint Spectral Radius”, Indag. Math., 22 (1960), 379–381 | MR
[27] Sacker R. J., Sell G. R., “Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I”, Journal of Differential Equations, 15 (1974), 429–458 | DOI | MR | Zbl
[28] Sacker R. J., Sell G. R., “Dichotomies for Linear Evoltionary Equations in Banach Spaces”, Journal of Differential Equations, 113 (1994), 17–67 | DOI | MR | Zbl
[29] Sell G. R., Lectures on Topological Dynamics and Differential Equations, Van Nostrand Reinhold math. studies, 2, Van Nostrand-Reinbold, London, 1971 | MR
[30] Shcherbakov B. A., Topologic Dynamics and Poisson Stability of Solutions of Differential Equations, Sţiinţa, Chişinău, 1972 | MR
[31] Vladimirov A., Elsner L., Beyn W.-J., “Stability and paracontractivity of discrete linear inclusion”, Linear Algebra and its Applications, 312 (2000), 125–134 | DOI | MR | Zbl
[32] De Vries J., Elements of Topological Dynamics, Mathematics and Its Applications, 257, Kluwer Academic Publishers, Dordecht–Boston–London, 1993 | MR | Zbl
[33] Wirth F., “On Stability of Infinite-Dimensional Discrete Inclusions”, Journal of Mathematical Systems, Estimations and Control, 8:4 (1998), 507–510 | MR | Zbl
[34] Wirth F., “The generalized spectral radius and external norms”, Linear Algebra end its Applications, 342 (2002), 17–40 | DOI | MR | Zbl