Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2004_3_a3, author = {Angela P\u{a}\c{s}canu and Alexandru \c{S}ub\u{a}}, title = {$GL(2,R)$-orbits of the polynomial sistems of differential equations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {25--40}, publisher = {mathdoc}, number = {3}, year = {2004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a3/} }
TY - JOUR AU - Angela Păşcanu AU - Alexandru Şubă TI - $GL(2,R)$-orbits of the polynomial sistems of differential equations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2004 SP - 25 EP - 40 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a3/ LA - en ID - BASM_2004_3_a3 ER -
%0 Journal Article %A Angela Păşcanu %A Alexandru Şubă %T $GL(2,R)$-orbits of the polynomial sistems of differential equations %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2004 %P 25-40 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a3/ %G en %F BASM_2004_3_a3
Angela Păşcanu; Alexandru Şubă. $GL(2,R)$-orbits of the polynomial sistems of differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 25-40. https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a3/
[1] Alekseev V. G., The theory of rational binary forms, Yuriev, 1899 (in Russian)
[2] Bautin N. N., Leontovich E. A., Methods and ways (examples) of the qualitative analysis of dynamical systems in a plane, Nauka, Moscow, 1990 (in Russian) | MR | Zbl
[3] Bruno A. D., Local method of nonlinear analysis of differential equations, Nauka, Moscow, 1979 (in Russian)
[4] Christopher C., Llibre J., “Algebraic aspects of integrability for polynomial systems”, Qualitative theory of dynamical systems, 1:1 (1999), 71–95 | DOI | MR
[5] Academic Press, 1982 | MR
[6] Popa M. N., Applications of algebras to differential systems, Academy of Sciences of Moldova, Chişinău, 2001 (in Russian) | Zbl
[7] Winberg E. B., Popov V. L., “The theory of invariants”, The results of Science and Technics, The Contemporary Problems in Mathematics, 55, Moscow, 1989, 137–313 (in Russian)