GL(2,R)-orbits of the polynomial sistems of differential equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 25-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we study the orbits of the polynomial systems x˙=P(x1,x2), x˙=Q(x1,x2) by the action of the group of linear transformations GL(2,R). It is shown that there are not polynomial systems with the dimension of GL-orbits equal to one and there exist GL-orbits of the dimension zero only for linear systems. On the basis of the dimension of GL-orbits the classification of polynomial systems with a singular point O(0,0) with real and distinct eigenvalues is obtained. It is proved that on GL-orbits of the dimension less than four these systems are Darboux integrable.
@article{BASM_2004_3_a3,
     author = {Angela P\u{a}\c{s}canu and Alexandru \c{S}ub\u{a}},
     title = {$GL(2,R)$-orbits of the polynomial sistems of differential equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {25--40},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a3/}
}
TY  - JOUR
AU  - Angela Păşcanu
AU  - Alexandru Şubă
TI  - $GL(2,R)$-orbits of the polynomial sistems of differential equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 25
EP  - 40
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a3/
LA  - en
ID  - BASM_2004_3_a3
ER  - 
%0 Journal Article
%A Angela Păşcanu
%A Alexandru Şubă
%T $GL(2,R)$-orbits of the polynomial sistems of differential equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 25-40
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a3/
%G en
%F BASM_2004_3_a3
Angela Păşcanu; Alexandru Şubă. $GL(2,R)$-orbits of the polynomial sistems of differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 25-40. https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a3/

[1] Alekseev V. G., The theory of rational binary forms, Yuriev, 1899 (in Russian)

[2] Bautin N. N., Leontovich E. A., Methods and ways (examples) of the qualitative analysis of dynamical systems in a plane, Nauka, Moscow, 1990 (in Russian) | MR | Zbl

[3] Bruno A. D., Local method of nonlinear analysis of differential equations, Nauka, Moscow, 1979 (in Russian)

[4] Christopher C., Llibre J., “Algebraic aspects of integrability for polynomial systems”, Qualitative theory of dynamical systems, 1:1 (1999), 71–95 | DOI | MR

[5] Academic Press, 1982 | MR

[6] Popa M. N., Applications of algebras to differential systems, Academy of Sciences of Moldova, Chişinău, 2001 (in Russian) | Zbl

[7] Winberg E. B., Popov V. L., “The theory of invariants”, The results of Science and Technics, The Contemporary Problems in Mathematics, 55, Moscow, 1989, 137–313 (in Russian)