On check character systems over groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 17-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we study check character systems (with one control symbol) over groups (over abelian groups) and the check formula a1δa2δ2a3δnan+1=e, where e is the identity of a group, δ is an automorphism (a permutation) of a group. For a group we consider strongly regular automorphisms (anti-automorphisms), their connection with good automorphisms and establish necessary and sufficient conditions in order that a system to be able to detect all single errors, transpositions, jump transpositions, twin errors and jump twin errors simultaneously.
@article{BASM_2004_3_a2,
     author = {G. Beliavscaia and A. Diordiev},
     title = {On check character systems over groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {17--24},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a2/}
}
TY  - JOUR
AU  - G. Beliavscaia
AU  - A. Diordiev
TI  - On check character systems over groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 17
EP  - 24
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a2/
LA  - en
ID  - BASM_2004_3_a2
ER  - 
%0 Journal Article
%A G. Beliavscaia
%A A. Diordiev
%T On check character systems over groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 17-24
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a2/
%G en
%F BASM_2004_3_a2
G. Beliavscaia; A. Diordiev. On check character systems over groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 17-24. https://geodesic-test.mathdoc.fr/item/BASM_2004_3_a2/

[1] Belyavskaya G. B., Izbash V. I., Shcherbacov V. A., “Check character systems over quasigroups and loops”, Quasigroups and related systems, 10 (2003), 1–28 | MR | Zbl

[2] Beckley D. F., “An optimum system with modulus 11”, The Computer Bulletin, 11 (1967), 213–215

[3] Broecker C., Schulz P.-H., Stroth G., “Check character systems using Chevalley groups”, Design, Codes and Cryptography, DESI, 10 (1997), 137–143 | DOI | MR | Zbl

[4] Ecker A., Poch G., “Check character systems”, Computing, 1986, no. 37(4), 277–301 | DOI | MR | Zbl

[5] Friedman W., Mendelsohn C. J., “Notes on Codewords”, Am. Math. Monthly, 1932, 394–409 | DOI | MR

[6] Gallian J. A., Mullin M. D., “Groups with anti-symmetric mappings”, Arch. Math., 65 (1995), 273–280 | DOI | MR | Zbl

[7] Heiss S., “Antisymmetric mappings for finite solvable groups”, Arch. Math., 69 (1997), 445–454 | DOI | MR | Zbl

[8] Heiss S., Antisymmetric mappings for finite groups, Preprint, 1999

[9] Johnson D. M., Dulmage A. L., Mendelsohn N. S., “Orthomorphisms of groups and orthogonal Latin squares, I”, Canad. J. Math., 13 (1961), 356–372 | MR | Zbl

[10] Schauffler R., “Über die Bilding von Codewörtern”, Arch. Electr. Übertragung, 1957, no. 10(7), 303–314 | MR

[11] Schulz R.-H., “On check digit systems using anti-symmetric mappings”, Numbers, Information and Complexity, eds. J. Althofer et al., Kluwer Acad. Publ., Boston, 2000, 295–310 | MR | Zbl

[12] Schulz R.-H., “Equivalence of check digit systems over the dicyclic groups of order 8 and 12”, Matematikdidaktik aus Begeisterung für die Mathematik, eds. J. Blankenagel, W. Spiegel, Klett Verlag, Stuttgart, 2000, 227–237 | Zbl

[13] Schulz R.-H., “Check Character Systems and Anti-symmetric Mappings”, Computational Discrete Mathematics, LNCS, 2122, ed. H. Alt, 2001, 136–147 | MR | Zbl

[14] Verhoeff I., Error detecting decimal codes, Math. Centre Tracts, 29, Math. Centrum, Amsterdam, 1969 | MR | Zbl