On natural classes of R-modules in the language of ring~R
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 95-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Every natural class of left R-modules is closed, i.e. is completely described by special set of left ideals of R (natural set). Some characterizations of such sets are shown. The complementation operator of sets is defined and its properties permit to transfer some results on natural classes to the lattice of left ideals of R.
@article{BASM_2004_2_a9,
     author = {A. I. Kashu},
     title = {On natural classes of $R$-modules in the language of ring~$R$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {95--101},
     publisher = {mathdoc},
     number = {2},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a9/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - On natural classes of $R$-modules in the language of ring~$R$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 95
EP  - 101
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a9/
LA  - en
ID  - BASM_2004_2_a9
ER  - 
%0 Journal Article
%A A. I. Kashu
%T On natural classes of $R$-modules in the language of ring~$R$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 95-101
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a9/
%G en
%F BASM_2004_2_a9
A. I. Kashu. On natural classes of $R$-modules in the language of ring~$R$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 95-101. https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a9/

[1] Stenström B., Rings of quotients, Springer Verlag, Berlin, 1975 | MR | Zbl

[2] Bican L., Kepka T., Nemec P., Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl

[3] Golan J. S., Torsion theories, Longman Sci. Techn., New York, 1986 | MR | Zbl

[4] Dauns J., “Module types”, Rocky Mountain Journal of Mathematics, 27:2 (1997), 503–557 | DOI | MR | Zbl

[5] Dauns J., “Lattices of classes of modules”, Commun. in Algebra, 27:9 (1999), 4363–4387 | DOI | MR | Zbl

[6] Page S. P., Zhou Y., “On direct sums of injective modules and chain conditions”, Canad. J. Math., 46:3 (1994), 634–647 | MR | Zbl

[7] Zhou Y., “The lattice of natural classes of modules”, Commun. in Algebra, 24:5 (1996), 1637–1648 | DOI | MR | Zbl

[8] Garcia A. A., Rincon H., Montes J. R., “On the lattices of natural and conatural classes in $R$-Mod”, Commun. in Algebra, 29:2 (2001), 541–556 | DOI | MR | Zbl

[9] Kashu A. I., “Closed classes of $\Lambda$-modules and closed sets of left ideals of ring $\Lambda$”, Matem. zametki, 5:3 (1969), 381–390 (In Russian) | MR

[10] Kashu A. I., Radicals and torsions in modules, Ştiinţa, Kishinev, 1983 (in Russian) | MR

[11] Kashu A. I., “On the axiomatic of torsions in $\Lambda$-modules in the language of left ideals of the ring $\Lambda$”, Matem. issled., 3:4(10) (1968), 166–174 (In Russian)