Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2004_2_a7, author = {Dmitrii Lozovanu and Stefan Pickl}, title = {Discrete optimal control problems on networks and dynamic games with $\mathbf p$ players}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {67--88}, publisher = {mathdoc}, number = {2}, year = {2004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a7/} }
TY - JOUR AU - Dmitrii Lozovanu AU - Stefan Pickl TI - Discrete optimal control problems on networks and dynamic games with $\mathbf p$ players JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2004 SP - 67 EP - 88 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a7/ LA - en ID - BASM_2004_2_a7 ER -
%0 Journal Article %A Dmitrii Lozovanu %A Stefan Pickl %T Discrete optimal control problems on networks and dynamic games with $\mathbf p$ players %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2004 %P 67-88 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a7/ %G en %F BASM_2004_2_a7
Dmitrii Lozovanu; Stefan Pickl. Discrete optimal control problems on networks and dynamic games with $\mathbf p$ players. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 67-88. https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a7/
[1] Bellman R., Kalaba R., Dynamic Programming and Modern Control Theory, Academic Press, New York–London, 1965
[2] Krabs W., Pickl S., Analysis, controlability and optimization of time-discrete systems and dynamical games, Springer, 2003
[3] Nash J. F., “Non cooperative games”, Annals of Math., 2:1 (1951), 286–295 | DOI | Zbl
[4] Gurvitch V. A., Karzanov A. V., Khatchiyan L. G., “Cyclic games: Finding min-max mean cycles in digraphs”, J. Comp. Mathem. and Math. Phys., 28(9) (1988), 1407–1417
[5] Lozovanu D. D., Extremal-combinatorial problems and algorithms for their solving, Stiinta, Kishinev, 1991
[6] Lozovanu D. D., “Dynamic games with $p$ players on networks”, Bul. Acad. de Ştiinţa a Rep. Moldova, Ser. Matematica, 2000, no. 1(32), 41–54
[7] Moulin H., Theorie de Jeux pour l'Economie et la Politique, Hermann, Paris, 1981
[8] Boliac R., Lozovanu D., Solomon D., “Optimal paths in network games with $p$ players”, Discrete Applied Mathematics, 99:1–3 (2000), 339–348 | DOI | Zbl
[9] Lozovanu D. D., “Algorithms for solving some network minimax problems and their applications”, Cybernetics, 1 (1991), 70–75 | Zbl
[10] Lozovanu D. D., Trubin V. A., “Minimax path problem on network and an algorithm for its solving”, Discrete Mathematics and Applications, 6 (1994), 138–144 | Zbl
[11] Lozovanu D. D., “A strongly polynomial time algorithm for finding minimax paths in networks and solving cyclic games”, Cybernetics and System Analysis, 5 (1993), 145–151 | Zbl
[12] Pickl S., “Convex Games and Feasible Sets in Control Theory”, Mathematical Methods of Operations Research, 53:1 (2001), 51–66 | DOI | Zbl
[13] Leitmann G., “Some extensions of a direct optimization method”, Journal of Optimization Theory and Applications, 111 (2001), 1–6 | DOI | Zbl
[14] Van den Nouweland A., Maschler M., Tijs S., “Monotonic Games are spanning network games”, International Journal of Game Theory, 21 (2001), 419–427
[15] Granot D., Hamers H., Tijs S., “Spanning network games”, International Journal of Game Theory, 27 (1998), 467–500 | DOI | MR | Zbl
[16] Weber G.-W., “Optimal control theory: On the global structure and connection with optimization”, Journal of Computational Technologies, 4:2 (1999), 3–25 | MR | Zbl
[17] Altman E., Basar T., Srikant R., “Nash quilibria for combined flow control and routing in network: asymptotic behavior for a large number of users”, IEEE Transactions on automatic control, 47:6 (2002), 917–929 | DOI | MR
[18] Boulogne T., Altman E., Kameda H., Pourtallier O., “Mixed equilibrium for multiclass routing games”, IEEE Transactions on automatic control. Special issue on control issues in telecommunication networks, 47:6 (2002), 903–916 | MR