Discrete optimal control problems on networks and dynamic games with p players
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 67-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a pecial class of discrete optimal control problems on networks. The dynamics of the system is described by a directed graph of passages. An additional integral-time cost criterion is given and the starting and final states of the system are fixed. The game-theoretical models for such a class of problems are formulated, and some theoretical results connected with the existence of the optimal solution in the sense of Nash are given. A polynomial-time algorithm for determining Nash equilibria is proposed. The results are applied to decision making systems and determining the optimal strategies in positional games on networks.
@article{BASM_2004_2_a7,
     author = {Dmitrii Lozovanu and Stefan Pickl},
     title = {Discrete optimal control problems on networks and dynamic games with $\mathbf p$ players},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {67--88},
     publisher = {mathdoc},
     number = {2},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a7/}
}
TY  - JOUR
AU  - Dmitrii Lozovanu
AU  - Stefan Pickl
TI  - Discrete optimal control problems on networks and dynamic games with $\mathbf p$ players
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 67
EP  - 88
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a7/
LA  - en
ID  - BASM_2004_2_a7
ER  - 
%0 Journal Article
%A Dmitrii Lozovanu
%A Stefan Pickl
%T Discrete optimal control problems on networks and dynamic games with $\mathbf p$ players
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 67-88
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a7/
%G en
%F BASM_2004_2_a7
Dmitrii Lozovanu; Stefan Pickl. Discrete optimal control problems on networks and dynamic games with $\mathbf p$ players. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 67-88. https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a7/

[1] Bellman R., Kalaba R., Dynamic Programming and Modern Control Theory, Academic Press, New York–London, 1965

[2] Krabs W., Pickl S., Analysis, controlability and optimization of time-discrete systems and dynamical games, Springer, 2003

[3] Nash J. F., “Non cooperative games”, Annals of Math., 2:1 (1951), 286–295 | DOI | Zbl

[4] Gurvitch V. A., Karzanov A. V., Khatchiyan L. G., “Cyclic games: Finding min-max mean cycles in digraphs”, J. Comp. Mathem. and Math. Phys., 28(9) (1988), 1407–1417

[5] Lozovanu D. D., Extremal-combinatorial problems and algorithms for their solving, Stiinta, Kishinev, 1991

[6] Lozovanu D. D., “Dynamic games with $p$ players on networks”, Bul. Acad. de Ştiinţa a Rep. Moldova, Ser. Matematica, 2000, no. 1(32), 41–54

[7] Moulin H., Theorie de Jeux pour l'Economie et la Politique, Hermann, Paris, 1981

[8] Boliac R., Lozovanu D., Solomon D., “Optimal paths in network games with $p$ players”, Discrete Applied Mathematics, 99:1–3 (2000), 339–348 | DOI | Zbl

[9] Lozovanu D. D., “Algorithms for solving some network minimax problems and their applications”, Cybernetics, 1 (1991), 70–75 | Zbl

[10] Lozovanu D. D., Trubin V. A., “Minimax path problem on network and an algorithm for its solving”, Discrete Mathematics and Applications, 6 (1994), 138–144 | Zbl

[11] Lozovanu D. D., “A strongly polynomial time algorithm for finding minimax paths in networks and solving cyclic games”, Cybernetics and System Analysis, 5 (1993), 145–151 | Zbl

[12] Pickl S., “Convex Games and Feasible Sets in Control Theory”, Mathematical Methods of Operations Research, 53:1 (2001), 51–66 | DOI | Zbl

[13] Leitmann G., “Some extensions of a direct optimization method”, Journal of Optimization Theory and Applications, 111 (2001), 1–6 | DOI | Zbl

[14] Van den Nouweland A., Maschler M., Tijs S., “Monotonic Games are spanning network games”, International Journal of Game Theory, 21 (2001), 419–427

[15] Granot D., Hamers H., Tijs S., “Spanning network games”, International Journal of Game Theory, 27 (1998), 467–500 | DOI | MR | Zbl

[16] Weber G.-W., “Optimal control theory: On the global structure and connection with optimization”, Journal of Computational Technologies, 4:2 (1999), 3–25 | MR | Zbl

[17] Altman E., Basar T., Srikant R., “Nash quilibria for combined flow control and routing in network: asymptotic behavior for a large number of users”, IEEE Transactions on automatic control, 47:6 (2002), 917–929 | DOI | MR

[18] Boulogne T., Altman E., Kameda H., Pourtallier O., “Mixed equilibrium for multiclass routing games”, IEEE Transactions on automatic control. Special issue on control issues in telecommunication networks, 47:6 (2002), 903–916 | MR