The Schauder basis in symmetrically normed ideals of operators
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 106-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we build a basis in a separable symmetrically normed ideal.
@article{BASM_2004_2_a11,
     author = {E. Spinu},
     title = {The {Schauder} basis in symmetrically  normed ideals of operators},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {106--107},
     publisher = {mathdoc},
     number = {2},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a11/}
}
TY  - JOUR
AU  - E. Spinu
TI  - The Schauder basis in symmetrically  normed ideals of operators
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 106
EP  - 107
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a11/
LA  - en
ID  - BASM_2004_2_a11
ER  - 
%0 Journal Article
%A E. Spinu
%T The Schauder basis in symmetrically  normed ideals of operators
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 106-107
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a11/
%G en
%F BASM_2004_2_a11
E. Spinu. The Schauder basis in symmetrically  normed ideals of operators. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 106-107. https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a11/

[1] Enflo P., “A counterexample to the approximation property in Banach spaces”, Acta Math., 130 (1973), 309–317 | DOI | MR | Zbl

[2] Fugarolas M., Cobos F., “On Schauder bases in the Lorentz operator ideal”, J. Math. Anal. Appl., 95 (1983), 235–242 | DOI | MR | Zbl

[3] Gohberg I., Krein M., Introduction to the theory of linear nonself-adjoint operators, Nauka, Moscow, 1965 (in Russian) | MR

[4] Singer I., Bases in Banach spaces, I, Springer, Berlin–Heidelberg–New York, 1970 | MR