Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2004_2_a11, author = {E. Spinu}, title = {The {Schauder} basis in symmetrically normed ideals of operators}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {106--107}, publisher = {mathdoc}, number = {2}, year = {2004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a11/} }
TY - JOUR AU - E. Spinu TI - The Schauder basis in symmetrically normed ideals of operators JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2004 SP - 106 EP - 107 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a11/ LA - en ID - BASM_2004_2_a11 ER -
E. Spinu. The Schauder basis in symmetrically normed ideals of operators. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2004), pp. 106-107. https://geodesic-test.mathdoc.fr/item/BASM_2004_2_a11/
[1] Enflo P., “A counterexample to the approximation property in Banach spaces”, Acta Math., 130 (1973), 309–317 | DOI | MR | Zbl
[2] Fugarolas M., Cobos F., “On Schauder bases in the Lorentz operator ideal”, J. Math. Anal. Appl., 95 (1983), 235–242 | DOI | MR | Zbl
[3] Gohberg I., Krein M., Introduction to the theory of linear nonself-adjoint operators, Nauka, Moscow, 1965 (in Russian) | MR
[4] Singer I., Bases in Banach spaces, I, Springer, Berlin–Heidelberg–New York, 1970 | MR