Radicals around K\"othe's problem
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 76-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Radicals γ will be studied for which the condition "A[x]γ for all nil rings A" is equivalent to the positive solution of Köthe's Problem (A[x] is Jacobson radical for all nil rings A, in Krempa's formulation). The closer γ is to the Jacobson radical, the better approximation of the positive solution is obtained. Seeking, however, for a negative solution, possibly large radicals γ are of interest. In this note such large radicals will be studied.
@article{BASM_2004_1_a8,
     author = {S. Tumurbat and R. Wiegandt},
     title = {Radicals around {K\"othe's} problem},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {76--84},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a8/}
}
TY  - JOUR
AU  - S. Tumurbat
AU  - R. Wiegandt
TI  - Radicals around K\"othe's problem
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 76
EP  - 84
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a8/
LA  - en
ID  - BASM_2004_1_a8
ER  - 
%0 Journal Article
%A S. Tumurbat
%A R. Wiegandt
%T Radicals around K\"othe's problem
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 76-84
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a8/
%G en
%F BASM_2004_1_a8
S. Tumurbat; R. Wiegandt. Radicals around K\"othe's problem. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 76-84. https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a8/

[1] Beidar K. I., Fong Y., Puczyłowski E. R., “A polynomial ring over a nil ring cannot be homomorphically mapped onto a ring with nonzero idempotents”, J. Algebra, 238 (2001), 389–399 | DOI | MR | Zbl

[2] Beidar K. I., Puczyłowski E. R., Wiegandt R., “Radicals and polynomial rings”, J. Austral. Math. Soc., 71 (2002), 1–7 | MR

[3] Drazin M. P., Roberts M. L., “Polynomial, multiplicative and special radicals”, Comm. in Algebra, 28 (2000), 3073–3093 | DOI | MR | Zbl

[4] Gardner B. J., Wiegandt R., Radical theory of rings, Marcel Dekker, 2004 | MR

[5] Krempa J., “Logical connections among some open problems in non-commutative rings”, Fund. Math., 76 (1972), 121–130 | MR

[6] McConnell N. R., Stokes T., “Rings having simple adjoint semigroup”, Contemporary Math., 273, 2001, 203–208 | MR | Zbl

[7] Sakhajev I. I., “Negative solution hypothesis of Koethe and some problems connected with it”, Abstract of Talks. Algebra Conference Venezia, 2002, 37–38

[8] Sands A. D., “Radicals and Morita contexts”, J. Algebra, 24 (1973), 335–345 | DOI | MR | Zbl

[9] Tumurbat S., “The radicalness of polynomial rings over nil rings”, Math. Pannonica, 13 (2002), 191–199 | MR | Zbl