Radicals of rings with involution
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 67-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present paper is to give a survey of the most important features of radicals in associative rings with involution including some new remarks and the most recent results on primitivity.
@article{BASM_2004_1_a7,
     author = {Rainer Mlitz},
     title = {Radicals of rings with involution},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {67--75},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a7/}
}
TY  - JOUR
AU  - Rainer Mlitz
TI  - Radicals of rings with involution
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 67
EP  - 75
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a7/
LA  - en
ID  - BASM_2004_1_a7
ER  - 
%0 Journal Article
%A Rainer Mlitz
%T Radicals of rings with involution
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 67-75
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a7/
%G en
%F BASM_2004_1_a7
Rainer Mlitz. Radicals of rings with involution. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 67-75. https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a7/

[1] Aburawash U. A., “Semiprime involution rings and chain conditions”, Proc. Vienna Conf. (1990), Contr. to General Alg., 7, Hölder-Pichler-Tempsky, Wien; B. G. Teubner, Stuttgart, 1991, 7–11 | MR

[2] Amitsur S. A., “A general theory of radicals. II: Radicals in rings and bicategories”, Amer. J. Math., 76 (1954), 100–125 | DOI | MR | Zbl

[3] Beidar K. I., Wiegandt R., “Rings with involution and chain conditions”, J. Pure Appl. Alg., 87 (1993), 205–220 | DOI | MR | Zbl

[4] Booth G. L., Groenwald N. J., “Special radicals in rings with involution”, Publ. Math. Debrecen, 48 (1996), 241–251 | MR

[5] Booth G. L., Groenewald N. J., “Radicals of involution rings”, Algebra Colloquium, 5 (1998), 277–284 | MR | Zbl

[6] Herstein I. N., Rings with involution, The University of Chicago Press, Chicago, 1976 | MR | Zbl

[7] Kurosh A. G., “Radicals of rings and algebras”, Mat. Sbornik, 33 (1953), 13–26 (In Russian) | MR | Zbl

[8] Lee P. H., Wiegandt R., “On radicals and rings with involution”, Publications in mathematics and applications, Ser. A, 3 (1992), 219–224 | MR | Zbl

[9] Loi N. V., “The $ADS$-property for radicals of involution $K^*$-algebras”, Archiv d. Math., 49 (1987), 196–199 | DOI | MR | Zbl

[10] Loi N. V., “A note on the radical theory of involution algebra”, Studia Sci. Math. Hung., 23 (1988), 157–160 | MR | Zbl

[11] Loi N. V., “Semisimple radical classes of involution algebras”, Proc. Edinburgh Math. Soc., 32 (1989), 1–9 | DOI | MR | Zbl

[12] Loi N. V., “On the structure of semiprime involution rings”, General Algebra, 1988; Proc. Krems Conf., North-Holland Publ. Comp., Amsterdam, 1990, 153–161 | MR

[13] Loi N. V., Wiegandt R., “Involution algebras and the Anderson-Divinsky-Sulinski property”, Acta Sci. Math., 50 (1986), 15–38 | MR

[14] Beidar K. I., Márki L., Mlitz R., Wiegandt R., On primitivity of involution rings, Manuscript, submitted

[15] Mlitz R., “Radicals and semisimple classes of $\Omega$-groups”, Proc. Edinburgh Math. Soc., 23 (1980), 37–41 | DOI | MR | Zbl

[16] Parmenter M. M., Passman D. S., Stewart P. N., “The strongly prime radical of crossed products”, Comm. Algebra, 12 (1984), 1099–1113 | DOI | MR | Zbl

[17] Rjabuhin Yu. M., “Radicals in categories”, Mat. issled., 2:3(5) (1967), 107–165 (In Russian) | MR

[18] Rowen L. H., Ring Theory, V. I, Academic Press, New York, 1988 | MR

[19] Salavova K., “Radicals of rings with involution. 1; 2”, Commentationes. Math. Univ. Carolinae, 18 (1977), 367–381 ; 455–466 (In Russian) | MR | Zbl | MR | Zbl

[20] Veldsman S., “The superprime radical”, Proc. Krems Conf. (1985), Contr. to General Alg., 4, Hölder-Pichler-Tempsky, Wien; B. G. Teubner, Stuttgart, 1987, 181–188 | MR

[21] Wiegandt R., Radical and semisimple classes of rings, Queen's papers in pure and applied Math., 37, Queen's University, Kingston, 1974 | MR | Zbl