Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2004_1_a7, author = {Rainer Mlitz}, title = {Radicals of rings with involution}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {67--75}, publisher = {mathdoc}, number = {1}, year = {2004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a7/} }
Rainer Mlitz. Radicals of rings with involution. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 67-75. https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a7/
[1] Aburawash U. A., “Semiprime involution rings and chain conditions”, Proc. Vienna Conf. (1990), Contr. to General Alg., 7, Hölder-Pichler-Tempsky, Wien; B. G. Teubner, Stuttgart, 1991, 7–11 | MR
[2] Amitsur S. A., “A general theory of radicals. II: Radicals in rings and bicategories”, Amer. J. Math., 76 (1954), 100–125 | DOI | MR | Zbl
[3] Beidar K. I., Wiegandt R., “Rings with involution and chain conditions”, J. Pure Appl. Alg., 87 (1993), 205–220 | DOI | MR | Zbl
[4] Booth G. L., Groenwald N. J., “Special radicals in rings with involution”, Publ. Math. Debrecen, 48 (1996), 241–251 | MR
[5] Booth G. L., Groenewald N. J., “Radicals of involution rings”, Algebra Colloquium, 5 (1998), 277–284 | MR | Zbl
[6] Herstein I. N., Rings with involution, The University of Chicago Press, Chicago, 1976 | MR | Zbl
[7] Kurosh A. G., “Radicals of rings and algebras”, Mat. Sbornik, 33 (1953), 13–26 (In Russian) | MR | Zbl
[8] Lee P. H., Wiegandt R., “On radicals and rings with involution”, Publications in mathematics and applications, Ser. A, 3 (1992), 219–224 | MR | Zbl
[9] Loi N. V., “The $ADS$-property for radicals of involution $K^*$-algebras”, Archiv d. Math., 49 (1987), 196–199 | DOI | MR | Zbl
[10] Loi N. V., “A note on the radical theory of involution algebra”, Studia Sci. Math. Hung., 23 (1988), 157–160 | MR | Zbl
[11] Loi N. V., “Semisimple radical classes of involution algebras”, Proc. Edinburgh Math. Soc., 32 (1989), 1–9 | DOI | MR | Zbl
[12] Loi N. V., “On the structure of semiprime involution rings”, General Algebra, 1988; Proc. Krems Conf., North-Holland Publ. Comp., Amsterdam, 1990, 153–161 | MR
[13] Loi N. V., Wiegandt R., “Involution algebras and the Anderson-Divinsky-Sulinski property”, Acta Sci. Math., 50 (1986), 15–38 | MR
[14] Beidar K. I., Márki L., Mlitz R., Wiegandt R., On primitivity of involution rings, Manuscript, submitted
[15] Mlitz R., “Radicals and semisimple classes of $\Omega$-groups”, Proc. Edinburgh Math. Soc., 23 (1980), 37–41 | DOI | MR | Zbl
[16] Parmenter M. M., Passman D. S., Stewart P. N., “The strongly prime radical of crossed products”, Comm. Algebra, 12 (1984), 1099–1113 | DOI | MR | Zbl
[17] Rjabuhin Yu. M., “Radicals in categories”, Mat. issled., 2:3(5) (1967), 107–165 (In Russian) | MR
[18] Rowen L. H., Ring Theory, V. I, Academic Press, New York, 1988 | MR
[19] Salavova K., “Radicals of rings with involution. 1; 2”, Commentationes. Math. Univ. Carolinae, 18 (1977), 367–381 ; 455–466 (In Russian) | MR | Zbl | MR | Zbl
[20] Veldsman S., “The superprime radical”, Proc. Krems Conf. (1985), Contr. to General Alg., 4, Hölder-Pichler-Tempsky, Wien; B. G. Teubner, Stuttgart, 1987, 181–188 | MR
[21] Wiegandt R., Radical and semisimple classes of rings, Queen's papers in pure and applied Math., 37, Queen's University, Kingston, 1974 | MR | Zbl