Generating properties of biparabolic invertible polynomial maps in three variables
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 34-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Invertible polynomial map of the standard 1-parabolic form xifi(x1,,xn1), i, xnαxn+hn(x1,,xn1) is a natural generalization of a triangular map. To generalize the previous results about triangular and bitriangular maps, it is shown that the group of tame polynomial transformations TGA3 is generated by an affine group AGL3 and any nonlinear biparabolic map of the form U0q1U1q2U2, where Ui are linear maps and both qi have the standard 1-parabolic form.
@article{BASM_2004_1_a3,
     author = {Yu. Bodnarchuk},
     title = {Generating properties of biparabolic  invertible  polynomial maps in three variables},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {34--39},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a3/}
}
TY  - JOUR
AU  - Yu. Bodnarchuk
TI  - Generating properties of biparabolic  invertible  polynomial maps in three variables
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 34
EP  - 39
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a3/
LA  - en
ID  - BASM_2004_1_a3
ER  - 
%0 Journal Article
%A Yu. Bodnarchuk
%T Generating properties of biparabolic  invertible  polynomial maps in three variables
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 34-39
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a3/
%G en
%F BASM_2004_1_a3
Yu. Bodnarchuk. Generating properties of biparabolic  invertible  polynomial maps in three variables. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 34-39. https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a3/

[1] Shafarevich I., “On some Infinite Dimensional Groups, II”, Izv. AN USSR, Ser. math., 45 (1981), 214–226 | MR | Zbl

[2] Kac V., “Simple irreducible graded Lie algebrais of finite growth”, Izv. AN USSR, Ser. math., 32 (1969), 1323–1367 | MR

[3] Bodnarchuk Yu., “Some extreme properties of the affine group as an automorphism group of the affine space”, Contribution to General Algebra, 13 (2001), 15–29 | MR

[4] Shestakov I., Umirbaev U., The tame and the wild automorphisms of polynomial rings in three variables, Preprint São Paulo University, 1, 2002, 1–35 | MR

[5] Mortimer B., “Permutation Groups containing Affine Groups of the same degree”, J. of London Math. Soc., 15 (1977), 445–455 | DOI | MR | Zbl

[6] Bodnarchuk Yu., “Generating properties of triangular and bitriangular birational automorphisms of an affine space”, Dopovidi NAN Ukraine, 11 (2002), 7–22 | MR

[7] Bodnarchuk Yu., “On affine-split tame invertible polynomial maps in three variables”, Buletinul A.Ş. a R. M., Matematika, 2002, no. 2(39), 37–43 | MR | Zbl