Totally bounded rings and their groups of units
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 93-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We will present here some recent results concerning totally bounded topological rings. Most results will be presented but not proved.
@article{BASM_2004_1_a10,
     author = {M. I. Ursul and A. Tripe},
     title = {Totally bounded rings and their groups of units},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {93--97},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a10/}
}
TY  - JOUR
AU  - M. I. Ursul
AU  - A. Tripe
TI  - Totally bounded rings and their groups of units
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 93
EP  - 97
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a10/
LA  - en
ID  - BASM_2004_1_a10
ER  - 
%0 Journal Article
%A M. I. Ursul
%A A. Tripe
%T Totally bounded rings and their groups of units
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 93-97
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a10/
%G en
%F BASM_2004_1_a10
M. I. Ursul; A. Tripe. Totally bounded rings and their groups of units. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 93-97. https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a10/

[1] Cohen J., Koh K., “The group of units in a compact ring”, J. Pure Appl. Algebra, 54 (1988), 167–179 | DOI | MR | Zbl

[2] Cohen J., Koh K., “On the group of units in a compact ring”, J. Pure Appl. Algebra, 51 (1988), 231–239 | DOI | MR | Zbl

[3] Cohen J., Koh K., “Half-transitive group actions in a compact ring”, J. Pure Appl. Algebra, 60 (1989), 139–153 | DOI | MR | Zbl

[4] Cohen J., Koh K., “The subgroup generated by the involutions in a compact ring”, J. Pure Appl. Algebra, 19 (1991), 2923–2954 | MR | Zbl

[5] Cohen J., Koh K., “Involutions in a compact ring”, J. Pure Appl. Algebra, 9 (1989), 151–168 | DOI | MR

[6] Cohen J., Koh K., “The structure of compact rings”, J. Pure Appl. Algebra, 77 (1992), 117–129 | DOI | MR | Zbl

[7] Cohen J., Koh K., “A characterization of the $p$-adic integers”, Comm. in Algebra, 17(3) (1989), 631–636 | DOI | MR | Zbl

[8] Cohen J., Koh K., “The subring generated by the units in a compact ring”, Comm. in Algebra, 18(5) (1990), 1617–1620 | DOI | MR | Zbl

[9] Cohen J., Koh K., “Topological and algebraic properties of the subgroup generated by involutions in a compact ring”, Papers on General Top. and Appl., Eight Summer Conference at Queens College, 1994, 310–317 | MR

[10] Cohen J., Koh K., “Compact rings having a finite simple group of units”, J. Pure Appl. Algebra, 119 (1997), 13–26 | DOI | MR | Zbl

[11] Cohen J., Koh K., Lorimer J. W., “On the primitive representations of the group of units of a ring to the symmetric group of nonunits”, J. Pure Appl. Algebra, 94 (1994), 285–306 | DOI | MR | Zbl

[12] Comfort W. W., Remus D., Szambien H., “Extending ring topologies”, J. Algebra, 232 (2000), 21–47 | DOI | MR | Zbl

[13] Holm P., “On the Bohr compactification”, Math. Ann., 156 (1964), 34–46 | DOI | MR | Zbl

[14] Kothe G., “Uber maximale nilpotente Unterringe und Nilringe”, Math. Ann., 105 (1931), 15–39 | DOI | MR

[15] Tripe A., “Compact Rings with Simple Groups of Units”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2002, no. 2(39), 93–99 | MR | Zbl

[16] Tripe A., Ursul M., “Countably compact rings with periodic groups of units”, Acta Math. Hungar., 90:1–2 (2001), 65–73 | DOI | MR | Zbl

[17] Tripe A., Ursul M., “Units in pseudo-compact rings”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2002, no. 2(39), 44–50 | MR | Zbl

[18] Ursul M. I., “Short communication 512.56”, Proceedings of the 5th Tiraspolian Symposium on General Topology and Its Applications, Kishinev, 1985, 231–232

[19] Ursul M. I., Topological rings satisfying compactness conditions, Kluwer, 2002 | MR | Zbl

[20] Zariski O., Samuel P., Commutative algebra, Vol. II, D. Van Nostrand Company, INC, 1960 | MR | Zbl