Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2004_1_a10, author = {M. I. Ursul and A. Tripe}, title = {Totally bounded rings and their groups of units}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {93--97}, publisher = {mathdoc}, number = {1}, year = {2004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a10/} }
TY - JOUR AU - M. I. Ursul AU - A. Tripe TI - Totally bounded rings and their groups of units JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2004 SP - 93 EP - 97 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a10/ LA - en ID - BASM_2004_1_a10 ER -
M. I. Ursul; A. Tripe. Totally bounded rings and their groups of units. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 93-97. https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a10/
[1] Cohen J., Koh K., “The group of units in a compact ring”, J. Pure Appl. Algebra, 54 (1988), 167–179 | DOI | MR | Zbl
[2] Cohen J., Koh K., “On the group of units in a compact ring”, J. Pure Appl. Algebra, 51 (1988), 231–239 | DOI | MR | Zbl
[3] Cohen J., Koh K., “Half-transitive group actions in a compact ring”, J. Pure Appl. Algebra, 60 (1989), 139–153 | DOI | MR | Zbl
[4] Cohen J., Koh K., “The subgroup generated by the involutions in a compact ring”, J. Pure Appl. Algebra, 19 (1991), 2923–2954 | MR | Zbl
[5] Cohen J., Koh K., “Involutions in a compact ring”, J. Pure Appl. Algebra, 9 (1989), 151–168 | DOI | MR
[6] Cohen J., Koh K., “The structure of compact rings”, J. Pure Appl. Algebra, 77 (1992), 117–129 | DOI | MR | Zbl
[7] Cohen J., Koh K., “A characterization of the $p$-adic integers”, Comm. in Algebra, 17(3) (1989), 631–636 | DOI | MR | Zbl
[8] Cohen J., Koh K., “The subring generated by the units in a compact ring”, Comm. in Algebra, 18(5) (1990), 1617–1620 | DOI | MR | Zbl
[9] Cohen J., Koh K., “Topological and algebraic properties of the subgroup generated by involutions in a compact ring”, Papers on General Top. and Appl., Eight Summer Conference at Queens College, 1994, 310–317 | MR
[10] Cohen J., Koh K., “Compact rings having a finite simple group of units”, J. Pure Appl. Algebra, 119 (1997), 13–26 | DOI | MR | Zbl
[11] Cohen J., Koh K., Lorimer J. W., “On the primitive representations of the group of units of a ring to the symmetric group of nonunits”, J. Pure Appl. Algebra, 94 (1994), 285–306 | DOI | MR | Zbl
[12] Comfort W. W., Remus D., Szambien H., “Extending ring topologies”, J. Algebra, 232 (2000), 21–47 | DOI | MR | Zbl
[13] Holm P., “On the Bohr compactification”, Math. Ann., 156 (1964), 34–46 | DOI | MR | Zbl
[14] Kothe G., “Uber maximale nilpotente Unterringe und Nilringe”, Math. Ann., 105 (1931), 15–39 | DOI | MR
[15] Tripe A., “Compact Rings with Simple Groups of Units”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2002, no. 2(39), 93–99 | MR | Zbl
[16] Tripe A., Ursul M., “Countably compact rings with periodic groups of units”, Acta Math. Hungar., 90:1–2 (2001), 65–73 | DOI | MR | Zbl
[17] Tripe A., Ursul M., “Units in pseudo-compact rings”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2002, no. 2(39), 44–50 | MR | Zbl
[18] Ursul M. I., “Short communication 512.56”, Proceedings of the 5th Tiraspolian Symposium on General Topology and Its Applications, Kishinev, 1985, 231–232
[19] Ursul M. I., Topological rings satisfying compactness conditions, Kluwer, 2002 | MR | Zbl
[20] Zariski O., Samuel P., Commutative algebra, Vol. II, D. Van Nostrand Company, INC, 1960 | MR | Zbl