On overnilpotent radicals of topological rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every overnilpotent radical defined on the class of all topological rings every σ-bounded locally bounded topological ring is a subring of some radical topological ring.
@article{BASM_2004_1_a0,
     author = {V. I. Arnautov},
     title = {On overnilpotent radicals of topological rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--14},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a0/}
}
TY  - JOUR
AU  - V. I. Arnautov
TI  - On overnilpotent radicals of topological rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 3
EP  - 14
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a0/
LA  - en
ID  - BASM_2004_1_a0
ER  - 
%0 Journal Article
%A V. I. Arnautov
%T On overnilpotent radicals of topological rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 3-14
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a0/
%G en
%F BASM_2004_1_a0
V. I. Arnautov. On overnilpotent radicals of topological rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 3-14. https://geodesic-test.mathdoc.fr/item/BASM_2004_1_a0/

[1] Arnautov B. I., “The theory of radicals of topological rings”, Mathematica Japonica, 47:3 (1998), 439–544 | MR | Zbl

[2] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the theory of topological rings and modules, Marcel Dekker, Inc., New York–Basel–Hong Kong, 1996 | MR | Zbl

[3] Vodinchar M. I., “On the minimal overnilpotent radical in topological rings”, Mat. issled., 3:4 (1968/1969), 29–50 (In Russian) | MR

[4] Trinh Dăng Khôi, “Strictly hereditary radicals in the class of all topological rings”, Stud. Sci. Math. Hung., 20:1–4 (1985), 37–41 (In Russian) | MR | Zbl