Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2003_3_a6, author = {P. V. Dovbush}, title = {$X$-normal mappings}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {71--82}, publisher = {mathdoc}, number = {3}, year = {2003}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a6/} }
P. V. Dovbush. $X$-normal mappings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 71-82. https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a6/
[1] Aladro G., “Application of the Kobayashi metric to normal functions of several complex variables”, Util. Math., 37 (1987), 13–24 | MR
[2] Bagemihl F., Seidel W., “Sequential and continuous limits of meromorphic functions”, Ann. Acad. Sci. Fenn., Ser. AI, 280 (1960) | MR | Zbl
[3] Bhenke H., Thullen P., Theorie der Functionen mehrerer komplexer Veränderlichen, 2nd ed., Springer-Verlag, Berlin–Heidelberg, 1970 | MR
[4] Bremermann H. J., “Holomorphic continuation of the kernels and the Bergman metric in several complex variables”, Lectures on Functions of a Complex Variables, Univ. of Michigan Press, Ann Arbor. Mich., 1955, 349–383 | MR
[5] Burns D., Shnider S., Wells R., “On deformations of strongly pseudoconvex domains”, Invent. Math., 46 (1978), 237–253 | DOI | MR | Zbl
[6] Cima J. A., Krantz S. G., “The Lindelöf principle and normal functions of several complex variables”, Duke Math. J., 50 (1983), 303–328 | DOI | MR | Zbl
[7] Math. U. S. S. R. sb., 21:4 (1973), 619–639 | DOI | MR | Zbl
[8] Moscow Univ. Bull., 36 (1981) | MR
[9] Moscow Univ. Bull., 36 (1981) | MR | Zbl
[10] Soviet Math. Dokl., 25 (1982) | MR | Zbl
[11] Math. Notes, 39 (1986), 196–199 | MR | Zbl | Zbl
[12] Siberian Math. J., 28:3 (1987), 411–414 | DOI | MR | Zbl | Zbl
[13] Ucrainian Math. J., 40:6 (1988), 673–676 | DOI | MR | Zbl
[14] Math. Notes, 47:5 (1990), 449–453 | MR | Zbl
[15] Math. Notes, 66:4 (1999), 409–410 | DOI | MR
[16] Dovbush P. V., “The negligible set for normal functions of several complex variables”, Rev. Roumaine de Math. Pures et Appl., 46:1 (2001), 29–35 | MR | Zbl
[17] Dovbush P. V., “Normal functions in convex domains in $\mathbb{C}^n$”, Mathematica Montisnigri, XIV (2001), 79–88 (In Russian) | MR
[18] Soviet Math. Dokl., 26 (1982) | MR | Zbl
[19] Dovbush P. V., Gavrilov V. I., “Normal mappings”, Mathematica Montisnigri, XIV (2001), 5–61 (In Russian) | MR
[20] Funahashi K., “Normal holomorphic mappings and classical theorems of function theory”, Nagoya Math J., 94 (1984), 89–104 | MR | Zbl
[21] Hahn K. T., “Asymptotic behavior of normal mappings of several complex variables”, Canad. J. Math., 36 (1984), 718 | MR | Zbl
[22] Hahn K. T., “Non-tangential limit theorems for normal mappings”, Pacific J. Math., 135:1 (1988), 57–64 | MR | Zbl
[23] Hakim M., Sibony N., “Functions holomorphes bornées et limites tangentielles”, Duke Math. J., 50:1 (1983), 123–141 | DOI | MR
[24] Järvi P., “An extension theorem for normal functions”, Proc. Amer. Math. Soc., 103 (1988), 1171 | DOI | MR | Zbl
[25] Krantz S. G., “Invariant metrics and the boundary behavior of holomorphic functions on domains in $\mathbb{C}^n$”, J. Geom. Anal., 1:2 (1991), 71–97 | MR | Zbl
[26] Lehto O., Virtanen K. I., “Boundary behavior and normal meromorphic functions”, Acta Math., 97 (1957), 47 | DOI | MR | Zbl
[27] Noshiro K., “Contributions to the theory of meromorphic functions in the unit circle”, J. Fac. Sci. Hokaido Imp. Univ., Ser. I, 7 (1938), 149
[28] Ramey W. C., “On the behavior of holomorphic functions near maximum modulus sets”, Math. Ann., 276 (1986), 137–144 | DOI | MR | Zbl
[29] Riihentaus J., “A nulset for normal functions in several variables”, Proc. Amer. Math. Soc., 110 (1990), 923 | DOI | MR | Zbl
[30] Rosay I.-P., “Sur une characterization de la boule parmi les domaines de $\mathbb{C}^n$ par son groupe d'automorphismes”, Ann. Inst. Fourier (Grenoble), 29:1 (1979), 91–97 | MR | Zbl
[31] Rudin W., Function Theory in the Unit Ball in $\mathbb{C}^n$, Springer-Verlag, Berlin, 1983 | Zbl
[32] Stein E. M., Boundary behavior of holomorphic function of several complex variables, Mathematical Notes, Princeton University Press, Princeton, NJ, 1972 | MR | Zbl
[33] Timoney R. M., “Bloch function in several complex variables, 1”, Bull. London Math. Soc., 12:37 (1980), 241–267 | DOI | MR | Zbl
[34] Wong B., “Characterization of the unit ball in $\mathbb{C}^n$ by its automorphism group”, Invent. Math., 41 (1977), 253–257 | DOI | MR | Zbl
[35] Wu H., “Normal families of holomorphic mappings”, Acta Math., 119:3–4 (1967), 193–233 | MR | Zbl
[36] Yosida K., “On a class of meromorphic functions”, Proc. Phys.-Math. Soc. Japan, 3 ser., 16 (1934), 235 | Zbl