Weak convergence of the distributions of Markovian random evolutions in two and three dimensions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Markovian random evolutions performed by a particle moving in R2 and R3 with some finite constant speed v randomly changing its directions at Poisson-paced time instants of intensity λ>0 uniformly on the S2 and S3-spheres, respectively. We prove that under the Kac condition $$ v\to\infty,\qquad \lambda\to\infty,\qquad\frac{v^2}{\lambda}\to c,\qquad c>0 $$ the transition laws of the motions weakly converge in an appropriate Banach space to the transition law of the two- and three-dimensional Wiener process, respectively, with explicitly given generators.
@article{BASM_2003_3_a3,
     author = {A. D. Kolesnik},
     title = {Weak convergence of the distributions of {Markovian} random evolutions in two and three dimensions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {41--52},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a3/}
}
TY  - JOUR
AU  - A. D. Kolesnik
TI  - Weak convergence of the distributions of Markovian random evolutions in two and three dimensions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 41
EP  - 52
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a3/
LA  - en
ID  - BASM_2003_3_a3
ER  - 
%0 Journal Article
%A A. D. Kolesnik
%T Weak convergence of the distributions of Markovian random evolutions in two and three dimensions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 41-52
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a3/
%G en
%F BASM_2003_3_a3
A. D. Kolesnik. Weak convergence of the distributions of Markovian random evolutions in two and three dimensions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 41-52. https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a3/

[1] Griego R., Hersh R., “Theory of random evolutions with applications to partial differential equations”, Trans. Amer. Math. Soc., 156 (1971), 405–418 | DOI | MR | Zbl

[2] Hersh R., “Random evolutions: a survey of results and problems”, Rocky Mount. J. Math., 4 (1974), 443–496 | MR

[3] Hersh R., Papanicolaou G., “Non-commuting random evolutions and an operator-valued Feynman-Kac formula”, Comm. Pure Appl. Math., 25 (1972), 337–367 | DOI | MR | Zbl

[4] Hersh R., Pinsky M., “Random evolutions are asymptotically Gaussian”, Comm. Pure Appl. Math., 25 (1972), 33–44 | DOI | MR | Zbl

[5] Hille E., Phillips R. S., Functional Analysis and Semigroups, Providence, RI, 1957

[6] Kolesnik A. D., “Weak convergence of a planar random evolution to the Wiener process”, J. Theoret. Prob., 14 (2001), 485–494 | DOI | MR | Zbl

[7] Kolesnik A. D., Turbin A. F., “The equation of symmetric Markovian random evolution in a plane”, Stoch. Proc. Appl., 75 (1998), 67–87 | DOI | MR | Zbl

[8] Korolyuk V. S., Swishchuk A. V., Semi-Markov Random Evolutions, Kluwer Publ. House, Amsterdam, 1994 | MR

[9] Kurtz T., “A limit theorem for perturbed operator semigroups with applications to random evolutions”, J. Func. Anal., 12 (1973), 55–67 | DOI | MR | Zbl

[10] Orsingher E., “Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws”, Stoch. Proc. Appl., 34 (1990), 49–66 | DOI | MR | Zbl

[11] Orsingher E., “Exact joint distribution in a model of planar random motion”, Stoch. Stoch. Rep., 69 (2000), 1–10 | MR | Zbl

[12] Pinsky M., “Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain”, Z. Wahrsch. Verw. Gebiete, 9 (1968), 101–111 | DOI | MR | Zbl

[13] Pinsky M., “Isotropic transport process on a Riemannian manifold”, Trans. Amer. Math. Soc., 218 (1976), 353–360 | DOI | MR | Zbl

[14] Pinsky M., Lectures on Random Evolution, World Scientific Publ., 1991 | MR | Zbl

[15] Tolubinsky E. V., The Theory of Transfer Processes, Naukova Dumka, Kiev, 1969 (In Russian)