Bieberbach-Auslander Theorem and Dynamics in Symmetric Spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper (my extended contribution to Intern. Conf. on Discrete Geometry dedicated to A. M. Zamorzaev) is to study dynamics of a discrete isometry group action in a noncompact symmetric space of rank one nearby its parabolic fixed points. Due to Margulis Lemma, such an action on corresponding horospheres is virtually nilpotent, so our extension of the Bieberbach-Auslander theorem for discrete groups acting on connected nilpotent Lie groups can be applied. As result, we show that parabolic fixed points of a discrete group of isometries of such symmetric space cannot be conical limit points and that the fundamental groups of geometrically finite locally symmetric of rank one orbifolds are finitely presented, and the orbifolds themselves are topologically finite.
@article{BASM_2003_3_a0,
     author = {Boris N. Apanasov},
     title = {Bieberbach-Auslander {Theorem} and {Dynamics} in {Symmetric} {Spaces}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--14},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a0/}
}
TY  - JOUR
AU  - Boris N. Apanasov
TI  - Bieberbach-Auslander Theorem and Dynamics in Symmetric Spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 3
EP  - 14
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a0/
LA  - en
ID  - BASM_2003_3_a0
ER  - 
%0 Journal Article
%A Boris N. Apanasov
%T Bieberbach-Auslander Theorem and Dynamics in Symmetric Spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 3-14
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a0/
%G en
%F BASM_2003_3_a0
Boris N. Apanasov. Bieberbach-Auslander Theorem and Dynamics in Symmetric Spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 3-14. https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a0/

[1] Auslander L., “Bieberbach's theorem on space groups and discrete uniform subgroups of Lie groups, II”, Amer. J. Math., 83 (1961), 276–280 | DOI | MR | Zbl

[2] Apanasov B., Conformal geometry of discrete groups and manifolds, De Gruyter Expositions in Math., XIV, W. de Gruyter, Berlin–New York, 2000, 523 pp. | MR

[3] Apanasov B., “Geometrically finite hyperbolic structures on manifolds”, Ann. of Glob. Analysis and Geom., 1:3 (1983), 1–22 | DOI | MR | Zbl

[4] Apanasov B., “Geometry and topology of complex hyperbolic and $CR$-manifolds”, Russian Math. Surveys, 52:5 (1997), 895–928 | DOI | MR | Zbl

[5] Apanasov B., Xiangdong Xie, “Geometrically finite complex hyperbolic manifolds”, Intern. J. of Math., 8 (1997), 703–757 | DOI | MR | Zbl

[6] Apanasov B., Xiangdong Xie, “Nilpotent groups and manifolds of negative curvature”, Topics in Complex Analysis, Differential Geometry and Mathematical Physics, Proc. of the third Intern. Workshop (Varna), eds. K. Sekigawa, S. Dimiev, World Scientific, Singapore, 1997, 105–115 | MR | Zbl

[7] Apanasov B., Xiangdong Xie, “Discrete actions on nilpotent Lie groups and negatively curved spaces”, Differential Geom. Appl., 20:1 (2004), 11–29 | DOI | MR | Zbl

[8] Ballmann W., Gromov M., Schroeder V., Manifolds of nonpositive curvature, Birkhäuser, Boston, 1985 | MR | Zbl

[9] Brian Bowditch, “Geometrical finiteness with variable negative curvature”, Duke J. Math., 77 (1995), 229–274 | DOI | MR

[10] Buser P., Karcher H., “Gromov's almost flat manifolds”, Asterisque, 81, 1981, 1–148 | MR

[11] Goldman W., Parker J., “Dirichlet polyhedron for dihedral groups acting on complex hyperbolic space”, J. of Geom. Analysis, 2:6 (1992), 517–554 | MR | Zbl

[12] Heintze Ernst, Hof Hans-Christoph, “Geometry of horospheres”, J. Diff. Geom., 12 (1977), 481–491 | MR | Zbl

[13] Margulis G. A., “Free properly discontinuous groups of affine transformations”, Dokl. Akad. Nauk SSSR, 272 (1983), 937–940 (In Russian) | MR

[14] Mostow G. D., Strong rigidity of locally symmetric spaces, Princeton Univ. Press, 1973 | MR | Zbl

[15] Starkov A. N., “Parabolic fixed points of Kleinian groups and the horospherical foliation on hyperbolic manifolds”, Intern. J. Math., 8 (1997), 289–299 | DOI | MR | Zbl

[16] Susskind Perry, Swarup Gadde A., “Limit sets of geometrically finite Kleinian groups”, Amer. J. Math., 114 (1992), 233–250 | DOI | MR | Zbl