Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2003_3_a0, author = {Boris N. Apanasov}, title = {Bieberbach-Auslander {Theorem} and {Dynamics} in {Symmetric} {Spaces}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--14}, publisher = {mathdoc}, number = {3}, year = {2003}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a0/} }
TY - JOUR AU - Boris N. Apanasov TI - Bieberbach-Auslander Theorem and Dynamics in Symmetric Spaces JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2003 SP - 3 EP - 14 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a0/ LA - en ID - BASM_2003_3_a0 ER -
Boris N. Apanasov. Bieberbach-Auslander Theorem and Dynamics in Symmetric Spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 3-14. https://geodesic-test.mathdoc.fr/item/BASM_2003_3_a0/
[1] Auslander L., “Bieberbach's theorem on space groups and discrete uniform subgroups of Lie groups, II”, Amer. J. Math., 83 (1961), 276–280 | DOI | MR | Zbl
[2] Apanasov B., Conformal geometry of discrete groups and manifolds, De Gruyter Expositions in Math., XIV, W. de Gruyter, Berlin–New York, 2000, 523 pp. | MR
[3] Apanasov B., “Geometrically finite hyperbolic structures on manifolds”, Ann. of Glob. Analysis and Geom., 1:3 (1983), 1–22 | DOI | MR | Zbl
[4] Apanasov B., “Geometry and topology of complex hyperbolic and $CR$-manifolds”, Russian Math. Surveys, 52:5 (1997), 895–928 | DOI | MR | Zbl
[5] Apanasov B., Xiangdong Xie, “Geometrically finite complex hyperbolic manifolds”, Intern. J. of Math., 8 (1997), 703–757 | DOI | MR | Zbl
[6] Apanasov B., Xiangdong Xie, “Nilpotent groups and manifolds of negative curvature”, Topics in Complex Analysis, Differential Geometry and Mathematical Physics, Proc. of the third Intern. Workshop (Varna), eds. K. Sekigawa, S. Dimiev, World Scientific, Singapore, 1997, 105–115 | MR | Zbl
[7] Apanasov B., Xiangdong Xie, “Discrete actions on nilpotent Lie groups and negatively curved spaces”, Differential Geom. Appl., 20:1 (2004), 11–29 | DOI | MR | Zbl
[8] Ballmann W., Gromov M., Schroeder V., Manifolds of nonpositive curvature, Birkhäuser, Boston, 1985 | MR | Zbl
[9] Brian Bowditch, “Geometrical finiteness with variable negative curvature”, Duke J. Math., 77 (1995), 229–274 | DOI | MR
[10] Buser P., Karcher H., “Gromov's almost flat manifolds”, Asterisque, 81, 1981, 1–148 | MR
[11] Goldman W., Parker J., “Dirichlet polyhedron for dihedral groups acting on complex hyperbolic space”, J. of Geom. Analysis, 2:6 (1992), 517–554 | MR | Zbl
[12] Heintze Ernst, Hof Hans-Christoph, “Geometry of horospheres”, J. Diff. Geom., 12 (1977), 481–491 | MR | Zbl
[13] Margulis G. A., “Free properly discontinuous groups of affine transformations”, Dokl. Akad. Nauk SSSR, 272 (1983), 937–940 (In Russian) | MR
[14] Mostow G. D., Strong rigidity of locally symmetric spaces, Princeton Univ. Press, 1973 | MR | Zbl
[15] Starkov A. N., “Parabolic fixed points of Kleinian groups and the horospherical foliation on hyperbolic manifolds”, Intern. J. Math., 8 (1997), 289–299 | DOI | MR | Zbl
[16] Susskind Perry, Swarup Gadde A., “Limit sets of geometrically finite Kleinian groups”, Amer. J. Math., 114 (1992), 233–250 | DOI | MR | Zbl