On initial value problem in theory of the second order differential equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 51-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the properties of the second order nonlinear differential equations b=g(a,b,b) with the function g(a,b,b=c) satisfying the following nonlinear partial differential equation \begin{gather*} g_{aacc}+2cg_{abcc}+2gg_{accc}+c^2g_{bbcc}+2cgg_{bccc}+g^2g_{cccc}+(g_a+cg_b)g_{ccc}- \\ 4g_{abc}-4cg_{bbc}-cg_{c}g_{bcc}-3gg_{bcc}-g_cg_{acc}+4g_cg_{bc}-3g_bg_{cc}+6g_{bb}=0. \end{gather*} Any equation b=g(a,b,b) with this condition on the function g(a,b,b) has the General Integral F(a,b,x,y)=0 shared with General Integral of the second order ODE's y=f(x,y,y) with the condition 4fy4=0 on the function f(x,y,y) or y+a1(x,y)y3+3a2(x,y)y2+3a3(x,y)y+a4(x,y)=0 with some coefficients ai(x,y).
@article{BASM_2003_2_a4,
     author = {Valerii Driuma and Maxim Pavlov},
     title = {On initial value problem in theory of the second order differential equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {51--58},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_2_a4/}
}
TY  - JOUR
AU  - Valerii Driuma
AU  - Maxim Pavlov
TI  - On initial value problem in theory of the second order differential equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 51
EP  - 58
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2003_2_a4/
LA  - en
ID  - BASM_2003_2_a4
ER  - 
%0 Journal Article
%A Valerii Driuma
%A Maxim Pavlov
%T On initial value problem in theory of the second order differential equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 51-58
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2003_2_a4/
%G en
%F BASM_2003_2_a4
Valerii Driuma; Maxim Pavlov. On initial value problem in theory of the second order differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 51-58. https://geodesic-test.mathdoc.fr/item/BASM_2003_2_a4/

[1] E. Cartan, “Sur les variétés a connexion projective”, Bulletin de la Société Mathémat. de France, 52 (1924), 205–241 | MR | Zbl

[2] E. Cartan, “Sur un classe d'espace de Weyl”, Ann. Sc. Ec. Normal Super., ser. 60, 3e (1943), 1–16 | MR

[3] V. Dryuma, “On Geometry of the second order differential equations”, Proceedings of Conference Nonlinear Phenomena, ed. K. V. Frolov, Nauka, Moscow, 1991, 41–48

[4] V. Dryuma, “Projective duality in theory of the second order differential equations”, Mathematical Researches, 112, Stiintsa, Kishinev, 1990, 93–103 | MR

[5] V. Dryuma, “Geometrical properties of multidimensional differential equations and the Finsler metrics of dynamical systems”, Teoret. Mat. Fiz., 99:2 (1994), 241–249 | MR | Zbl

[6] V. Dryuma, “Geometrical properties of nonlinear dynamical systems”, Proceedings of the First Workshop on Nonlinear Physics (Le Sirenuse, Gallipoli, Lecce, Italy, June 29–July 7, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Scientific, Singapore, 1996, 83–93 | MR | Zbl

[7] Calogero F., “A solvable nonlinear wave equation”, Studies in Applied Mathematics, LXX:3 (1984), 189–199 | MR

[8] Pavlov M., “The Calogero equation and Liouville type equations”, Teoret. Mat. Fiz., 128:1 (2001), 109–115 | MR | Zbl

[9] Koppisch A., Zur Invariantentheorie der gewonhlichen Differentialgleichung zweiter Ordnung, Inaugural-Dissertation, Leipzig, 1905, 1–30. | Zbl