Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 13-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

For planar polynomial homogeneous real vector field X=(P,Q) with deg(P)=deg(Q)=n some algebraic equations of degree n+1 with GL(2,R)-invariant coefficients are constructed. A recurrent method for the construction of these coefficients is given. In the generic case each real or imaginary solution si(i=1,2,,n+1) of the main equation is a value of the derivative of the slope function, calculated for the corresponding invariant line. Other constructed equations have, respectively, the solutions 1/si, 1si, si/(si1), (si1)/si, 1/(1si). The equation with the solutions (n+1)si1 is called residual equation. If X has real invariant lines, the values and signs of solutions of constructed equations determine the behavior of the orbits in a neighbourhood at infinity. If X has not real invariant lines, it is shown that the necessary and sufficient conditions for the center existence can be expressed through the coefficients of residual equation.
@article{BASM_2003_2_a1,
     author = {Valeriu Baltag},
     title = {Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {13--27},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_2_a1/}
}
TY  - JOUR
AU  - Valeriu Baltag
TI  - Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 13
EP  - 27
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2003_2_a1/
LA  - en
ID  - BASM_2003_2_a1
ER  - 
%0 Journal Article
%A Valeriu Baltag
%T Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 13-27
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2003_2_a1/
%G en
%F BASM_2003_2_a1
Valeriu Baltag. Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 13-27. https://geodesic-test.mathdoc.fr/item/BASM_2003_2_a1/

[1] Perron O., “Über das Verhalten der Integralkurven einer Differentialgleichung erster Ordnung in der Umgebund eines singularen Punktes”, Math. Ztschr., 15 (1922) | DOI | MR | Zbl

[2] Frommer M., “Die Integralkurven einer gewöhnlichen Differentialgleichung erster Ordnung in der Umgebund rationaler Unbestimmtheitsstellen”, Math. Annalen, 99 (1928), 222–272 | DOI | MR | Zbl

[3] Bocher M., Einführung in die Höhere Algebra, GITTL, M.–L., 1933 (in Russian)

[4] Sushkevich A. K., The foundations of higher algebra, ONTI, M.–L., 1937 (in Russian)

[5] Lohn R., “Ueber singulare Punkte gewöhnlicher Differentialgleichungen”, Math. Ztschr., 44:4 (1938)

[6] Forster H., “Ueber das Verhalten der Integralkurven einer gewöhnlichen Differentialgleichung erster Ordnung in der Umgebund eines singularen Punktes”, Math. Ztschr., 43:2 (1938), 271–320 | DOI | MR

[7] Nemytskii V. V., Stepanov V. V., The qualitative theory of differential equations, GITTL, M.–L., 1949 (in Russian)

[8] Shilov G. E., “The integral curves of homogeneous differential equation of the first degree”, Uspehi matem. nauk, 5:5 (1950), 193–203 (in Russian) | MR | Zbl

[9] Poincare H., “Sur les courbes définies par les équations differentielles”, Oeuvres, T. I, Gauthier-Villars, 1951

[10] Lyagina L. S., “The integral curves of the equation $y'=\frac{ax^2+bxy+cy^2}{dx^2+exy+fy^2}$”, Uspehi matem. nauk, 6:2(42) (1951), 171–183 (in Russian) | MR | Zbl

[11] Sansone C., Conti R., Curve caratteristiche di sistemi omogeni, Scritti matem. onore Filippo Sibirani, Bologna, 1957 | Zbl

[12] Chang Die, “The topological structure of the integral curves for differential equation $\frac{dy}{dx}=\frac{ax^3+bx^2y+cxy^2+dy^3}{a_1x^3+b_1x^2y+c_1xy^2+d_1y^3}$”, Advanc. in Mathem., 3:2 (1957), 234–245 (in Chinese) | MR

[13] Potlov V. V., “The behavior of integral curves for homogeneous differential equation”, Uchenye zapiski Ryazanskogo Gosudarstvennogo pedagogicheskogo instituta, 24 (1960), 127–137 (in Russian)

[14] Lee Shen-ling, “Topological structure of integral curves for differential equation $y'=\frac{a_0x^n+a_1x^{n-1}y+\dots+a_ny^n}{b_0x^n+b_1x^{n-1}y+\dots+b_ny^n}$”, Acta Math. Sinica, 10:1 (1960) (in Chinese) | MR

[15] Voronova V. F., “The position of the integral curves in the neighborhood of the singular point for one kind of differential equation”, Uchenye zapiski Ryazanskogo Gosudarstvennogo pedagogicheskogo instituta, 24 (1960), 23–32 (in Russian)

[16] Markus L., “Quadratic differential equations and non-associative algebras”, Ann. Math. Studies, 45, 1960, 185–213 | MR | Zbl

[17] Cherevichnyi P. T., The behavior of integral curves in the neighborhood of the singular point for one kind of differential equation, Thesis, Kiev, 1963 (in Russian)

[18] Krasnoselskii M. A., The Vector Fields on the Plane, GIFML, M., 1963 (in Russian)

[19] Malyshev Iu. V., “Geometrical Method of investigation of the behavior of integral curves for differential equation of the first degree”, Vestnik Mosk. Gos. Un-ta. Ser. matem. meh., 1965, no. 6, 15–27 (in Russian)

[20] Lunkevich V. A., Sibirskii K. S., “The center conditions for differential system with homogeneous nonlinearities of the third degree”, Diff. uravneniya, 1:11 (1965), 1482–1487 (in Russian) | MR | Zbl

[21] Cronin J., “The Point at Infinity and Periodic Solutions”, Journal of Diff. Equations, 1 (1965), 156–170 | DOI | MR | Zbl

[22] Coppel W. A., “A survey of quadratic systems”, J. Diff. Equations, 2:3 (1966), 293–304 | DOI | MR | Zbl

[23] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Qualitative theory of dynamical systems on the plane, Nauka, M., 1966 (in Russian) | MR | Zbl

[24] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Bifurcation theory of dynamical system on the plane, Nauka, M., 1967 (in Russian) | MR

[25] Argemi J., “Sur les points singuliers multiples de systémes dinamiques dans $R^2$”, Annali di matematica pura ed applicata, 4 ser., 79 (1968), 35–70 | DOI | MR

[26] Shustikov V. M., “The investigation of the trajectories behavior for homogeneous differential equation”, Uchenye zapiski Ryazanskogo Gosudarstvennogo pedagogicheskogo instituta, 67 (1968), 167–170 (in Russian) | MR

[27] Berlinskii A. N., “About the topology of family of integral curves for homogeneous differential equation”, Diff. uravneniya, 8:3 (1972), 395–405 (in Russian) | MR | Zbl

[28] Vulpe N. I., Sibirskii K. S., “Affine classification of the quadratic systems”, Diff. uravneniya, 10:12 (1974), 2111–2124 (in Russian) | MR | Zbl

[29] Vulpe N. I., Sibirskii K. S., “Affine invariant coefficient conditions for topological differentiation of the quadratic systems”, Matem. issled., 10, no. 3(37), Shtiintsa, Cishinau, 1975, 15–28 (in Russian) | MR

[30] Barugola A., Contribution a l'étude des singularités non élementaires de systemes dynamiques plans, These, Marseille, 1975 | Zbl

[31] Cathala C., Contribution a l'étude qualitative de systemes dynamiques plans dans le voisinage d'un point singuliér, These, Marseille, 1975 | Zbl

[32] Date T., Iri M., “Canonical forms of real homogeneous quadratic transformations”, J. of. Math. Anal. and Applic., 56 (1976), 650–682 | DOI | MR | Zbl

[33] Dang Din Bik, Sibirskii K. S., “Affine classification of cubic differential system”, Issled. po algebre, matem. analizu i ih prilozheniyam, Shtiintsa, Chisinau, 1977, 43–52 (in Russian)

[34] Vulpe N. I., Sibirskii K. S., “Geometrical classification of quadratic systems”, Diff. uravneniya, 13:5 (1977), 803–814 (in Russian) | MR | Zbl

[35] Newton T. A., “Two-dimensional homogeneous quadratic differential systems”, SIAM Review, 20:1 (1978), 120–138 | DOI | MR | Zbl

[36] Erugin N. P., The reader's book for generale course of differential equations, Nauka i Tehnika, Minsk, 1979 (in Russian) | MR | Zbl

[37] Date T., “Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems”, J. of Diff. Equations, 32 (1979), 311–334 | DOI | MR | Zbl

[38] Sibirskii K. S., Introduction in algebraical theory of invariants for differential equations, Shtiintsa, Chisinau, 1982 (in Russian) | MR

[39] Ciobanu V. M., Affine invariant conditions of the topological differentiation for cubic differential system with $\alpha_3\ne0$, $D=0$, Dep. MoldNIINTI, No 365M, 1984, 1–13 (in Russian)

[40] Vdovina E. V., “The singular points classification of the equation $y'=\frac{a_0x^2+a_1xy+a_2y^2}{b_0x^2+b_1xy+b_2y^2}$ by Forster's method”, Diff. uravneniya, 20:10 (1984), 1809–1813 (in Russian) | MR | Zbl

[41] Vdovina E. V., Sharf S. V., The singular points classification of the equation $y'=\frac{a_0x^3+a_1x^2y+a_2xy^2+a_3y^3}{b_0x^3+b_1x^2y+b_2xy^2+b_3y^3}$ by Forster's method, Dep. VINITI, No 2125-85 Dep., 1985, 42–67 (in Russian)

[42] Curtz P., “Varia sur les systemes quadratiques”, C.R. Acad. Sci. Paris, Ser. 1 Math., 300:14 (1985), 475–480 | MR | Zbl

[43] Vulpe N. I., Sibirskii K. S., “Centeraffine invariant conditions for the center existence for differential system with nonlinearities of the third degree”, DAN SSSR, 301:6 (1988), 1297–1301 (in Russian) | MR

[44] Cima A., Llibre J., “Algebraic and Topological clasification of the Homogeneous Cubic Vector Fields in the Plane”, J. Math. Anal. Appl., 147:2 (1990) | DOI | MR | Zbl

[45] Yang Xian, Zhang Jianfeng, “Algebraic classification of polynomial systems in the plane”, Ann. Diff. Eq., 6:4 (1990), 463–480 | MR | Zbl

[46] Daniliuc V. I., Ciobanu V. M., “Centeraffine invariant canonical forms for bidimensional differential system with nonlinearities of the third degree”, Matem. issled., 124, Shtiintsa, Chisinau, 1992 (in Russian)

[47] Olver Peter J., Classical Invariant Theory, London Mathematical Society student texts, 44, Cambridge University Press, 1999 | MR