Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2003_2_a0, author = {V. Glavan and Z. Rzesz\'otko}, title = {On {Strong} {Stability} of {Linear} {Poisson} {Actions}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {5--12}, publisher = {mathdoc}, number = {2}, year = {2003}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_2_a0/} }
V. Glavan; Z. Rzeszótko. On Strong Stability of Linear Poisson Actions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 5-12. https://geodesic-test.mathdoc.fr/item/BASM_2003_2_a0/
[1] Meyer K. R., Hall G. R., Introduction to Hamiltonian dynamical systems and the $n$-body problem, Springer-Verlag, New York, 1992 | MR
[2] Cushman R., Kelly R., “Strongly stable real infinitesimal symplectic mappings”, J. Diff. Eq., 31:2 (1979), 200–223 | DOI | MR | Zbl
[3] Levi M., “On stability of symplectic maps”, J. Diff. Eq., 50:3 (1983), 441–443 | DOI | MR | Zbl
[4] Wójtkowski M. P., “A remark on strong stability of linear Hamiltonian systems”, J. Diff. Eq., 81:2 (1989), 313–316 | DOI | MR | Zbl
[5] Krein M. G., “Obobschenie nekotorykh issledovanii A. M. Lyapunova o lineinykh differentsialnykh uravneniyakh s periodicheskimi koeffitsientami”, DAN SSSR, 73:3 (1950), 445–448 | MR | Zbl
[6] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR
[7] Arnold V. I., Avez A., Les problemes ergodiques de la mechanique classique, Paris, 1967 | MR
[8] Gaishun I. V., Vpolne razreshimye mnogomernye differentsialnye uravneniya, Minsk, 1983 | MR
[9] Shcherbacov B. A., “The principle of composition of multidimensional dynamical systems”, Bul. AS RM, 1994, no. 1(14), 55–59 | MR
[10] Shcherbacov B. A., “Multidimensional dynamical systems”, Diff. Eq., 30:5 (1994), 679–686
[11] Lerman L. M., Umanskiy Ya. L., Four-dimensional integrable Hamiltonian systems with simple singular points (Topological aspects), Translations of Mathematical Monographs, 176, American Mathematical Society, Providence, 1998 | MR | Zbl
[12] Guralnick R. M., Sethuraman B. A., “Commuting pairs and triples of matrices and related varieties”, Linear Algebra Appl., 310 (2000), 139–148 | DOI | MR | Zbl
[13] Livšic M. S., Kravitsky N., Marcus A. S., Vinnikov V., Theory of commuting nonselfadjoint operators, Kluwer Academic Publishers, Dordrecht, 1995 | MR | Zbl
[14] Glavan V., “Strong stability criteria for the linear Hamilton-Pfaff systems”, Proceedings of the second international workshop on Mathematica system in teaching and research (Siedlce), Moscow, 2000
[15] Glavan V., Rzeszótko Z., “On strongly stable linear Poisson actions”, Treti nauchnye chteniya po obyknovennym differentsialnym uravneniyam (Minsk, Belarus, 2001)