Note on multiple zeta--values
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 78-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce some generating functions g(t;x) for multiple zeta values. They satisfy linear differential equations Pg+xag=0 of the Fuch type. We find WKB-type expansions for g as x.
@article{BASM_2003_1_a7,
     author = {Henryk \.Zo{\l}\k{a}dek},
     title = {Note on multiple zeta--values},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {78--82},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a7/}
}
TY  - JOUR
AU  - Henryk Żołądek
TI  - Note on multiple zeta--values
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 78
EP  - 82
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a7/
LA  - en
ID  - BASM_2003_1_a7
ER  - 
%0 Journal Article
%A Henryk Żołądek
%T Note on multiple zeta--values
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 78-82
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a7/
%G en
%F BASM_2003_1_a7
Henryk Żołądek. Note on multiple zeta--values. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 78-82. https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a7/

[1] G. Bateman, A. Erdelyi, Higher Transcendental Functions, v. 1, McGraw-Hill Book C., New York, 1953 | Zbl

[2] R. Apéry, “Irrationabilité de $\zeta(2)$ et $\zeta(3)$”, Asterisque, 61, 1979, 11–13 | MR | Zbl

[3] A. B. Goncharov, “Multiple $\zeta$-values, Galois groups and geometry of modular varietes”, European Congress of Mathematics, I (Barcelona, 2000), Progress in Math., 201, Birkhäuser, Basel, 2001, 361–392 | MR | Zbl

[4] M. Kontsevich, D. Zagier, “Periods”, Mathematics Unlimited - 2001 and beyond, Springer, Berlin, 2001, 771–808 | MR | Zbl

[5] A. M. Legendre, Elements de Geométrie, Note 4, Paris, 1855

[6] F. Lindemann, “Über die Zahl $\pi$”, Math. Ann., 20:2 (1882), 213–225 | DOI | MR

[7] de Gruyter Studies in Math., 12, Walter de Gruyter Co., Berlin, 1989 | MR | Zbl

[8] D. Zagier, “Values of zeta function and their applications”, First European Congress of Mathematicians, 2, Progress in Math., 120, Birkhäuser, Basel, 1994, 497–512 | MR | Zbl