Global attractors for $V$-monotone nonautonomous dynamical systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 47-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the study of the compact global atrractors of V-momotone nonautonomous dynamical systems.We give a description of the structure of compact global attractors of this class of systems. Several applications of general results for different classes of differential equations (ODEs, ODEs with impulse, some classes of evolutionary partial differential equations) are given.
@article{BASM_2003_1_a4,
     author = {David N. Cheban and Peter E. Kloeden and Bj\"orn Schmalfu{\ss}},
     title = {Global attractors for $V$-monotone nonautonomous dynamical systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {47--57},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a4/}
}
TY  - JOUR
AU  - David N. Cheban
AU  - Peter E. Kloeden
AU  - Björn Schmalfuß
TI  - Global attractors for $V$-monotone nonautonomous dynamical systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 47
EP  - 57
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a4/
LA  - en
ID  - BASM_2003_1_a4
ER  - 
%0 Journal Article
%A David N. Cheban
%A Peter E. Kloeden
%A Björn Schmalfuß
%T Global attractors for $V$-monotone nonautonomous dynamical systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 47-57
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a4/
%G en
%F BASM_2003_1_a4
David N. Cheban; Peter E. Kloeden; Björn Schmalfuß. Global attractors for $V$-monotone nonautonomous dynamical systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 47-57. https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a4/

[1] Arnold L., Random Dynamical Systems, Springer-Verlag, Heidelberg, 1998 | MR

[2] Babin A. V., Vishik M. I., Attractors of evolutional equations, North-Holland, Amsterdam–London–New York–Tokyo, 1992 | MR | Zbl

[3] Bourbaki N., Variétés différentielles et analitiques (Fascicule de résultats), Herman, Paris, 1971 | MR

[4] Brezis H., Operateurs maximaux monotones et semigroupes des contractions dans les espaces de Hilbert, Math. Studies, 5, North Holland, 1973 | MR | Zbl

[5] Bronshteyn I. U., Extensions of minimal transformation groups, Noordhoff, Leyden, 1979

[6] Bronshteyn I. U., Nonautonomous dynamical systems, “Shtiintsa”, Kishinev, 1984 (in Russian) | MR

[7] Cheban D. N., “$\mathbb{C}$-analytic dissipative dynamical systems”, Differential Equations, 22:11 (1986), 1915–1922 | MR | Zbl

[8] Cheban D. N., Nonautonomous dissipative dynamical systems, Thesis of doctor of science, Minsk, 1991

[9] Cheban D. N., “Global attractors of infinite-dimensional nonautonomous dynamical systems, I”, Bulletin of Academy of Sciences of Republic of Moldova. Mathematics, 1997, no. 3(25), 42–55 | MR | Zbl

[10] Cheban D. N., Kloeden P. E., Schmalfuss B., Pullback attractors in dissipative nonautonomous differential equations under disscretization, DANSE-Preprint, FU Berlin, 1998 | MR

[11] Cheban D. N., Kloeden P. E., Schmalfuss B., The Relationship between Pullback, Forwards and Global Attractors of Nonautonomous Dynamical Systems, DANSE-Preprint, FU Berlin, 2000 | MR | Zbl

[12] Cheresiz V. M., “$V$-monotone systems and almost periodical solutions”, Sibirskii matematicheskii zhurnal, 13:4 (1972), 921–932 | MR

[13] Cheresiz V. M., “Uniformly $V$-monotone systems. Almost periodical solutions”, Sibirskii matematicheskii zhurnal, 13:5 (1972), 1107–1123 | MR

[14] Carvalho A. N., Cholewa J. W., Dlotko T., “Global attractors for problems with monotone operators”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 2(8):3 (1999), 693–706 | MR | Zbl

[15] Haraux A., “Attractors of asymptotic compact processes and applications to nonlinear partial differential equations”, Commun. in partial differ. equat., 13:11 (1988), 1383–1414 | DOI | MR | Zbl

[16] Haraux A., Systémes Dynamiques Dissipativs et Applications, Masson, Paris–Milan–Barselona–Rome, 1991 | MR | Zbl

[17] Hartman Ph., Ordinary Differential Equations, Birkhäuser, Boston–Basel–Stuttgart, 1982 | MR | Zbl

[18] Hitoshi I., “On the existence of almost periodic complete trajectories for contractive almost periodic processes”, Journal of differential equations, 43:1 (1982), 66–72 | DOI | MR | Zbl

[19] Levitan B. M., Zhikov V. V., Almost periodic functions and differential equations, Cambridge Univ. Press, London, 1982 | MR | Zbl

[20] Lions J.-L., Quelques methodes de résolution des problèmes aux limites non linéares, Dunod, Paris, 1969 | MR | Zbl

[21] Nacer H., Systems dynamiques nonautonomes contractants et leur applications, These de magister, USTHB, Algerie, 1983

[22] Sell G. R., Lectures on Topological Dynamics and Differential Equations, Van Nostrand-Reinbold, London, 1971 | MR | Zbl

[23] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer, 1997 | MR | Zbl

[24] Trubnikov Yu. V., Perov A. I., The differential equations with monotone nonlinearity, Nauka i Tehnika, Minsk, 1986 (in Russian) | MR | Zbl

[25] Zhikov V. V., “Monotonicity in the theory of nonlinear almost periodical operational equations”, Matematicheskii sbornik, 90(132):2 (1973), 214–228 | MR | Zbl