Quadratic systems with limit cycles of normal size
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 31-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class of planar autonomous quadratic polynomial differential systems we provide 6 different phase portraits having exactly 3 limit cycles surrounding a focus, 5 of them have a unique focus. we also provide 2 different phase portraits having exactly 3 limit cycles surrounding one focus and 1 limit cycle surrounding another focus. the existence of the exact given number of limit cycles is proved using the dulac function. all limit cycles of the given systems can be detected through numerical methods; i.e. the limit cycles have “a normal size” using perko's terminology.
@article{BASM_2003_1_a3,
     author = {Leonid A. Cherkas and Joan C. Art\'es and Jaume Llibre},
     title = {Quadratic  systems with limit cycles of normal size},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {31--46},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a3/}
}
TY  - JOUR
AU  - Leonid A. Cherkas
AU  - Joan C. Artés
AU  - Jaume Llibre
TI  - Quadratic  systems with limit cycles of normal size
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 31
EP  - 46
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a3/
LA  - en
ID  - BASM_2003_1_a3
ER  - 
%0 Journal Article
%A Leonid A. Cherkas
%A Joan C. Artés
%A Jaume Llibre
%T Quadratic  systems with limit cycles of normal size
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 31-46
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a3/
%G en
%F BASM_2003_1_a3
Leonid A. Cherkas; Joan C. Artés; Jaume Llibre. Quadratic  systems with limit cycles of normal size. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 31-46. https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a3/

[1] J. C. Artes, J. Llibre, “Quadratic vector fields with a weak focus of third order”, Publicacions Matemàtiques, 47 (1997), 1–21 | MR

[2] Amer. Math. Soc. Transl., 100, 1954, 397–413 | MR | Zbl | Zbl

[3] L. A. Cherkas, “Dulac function for polynomial autonomous systems on a plane”, J. Differential Equations, 33 (1997), 692–701 | MR | Zbl

[4] L. A. Cherkas, “Methods for counting the number of limit cycles of autonomous systems”, Differential Equations, 13 (1977), 779–801, trans. from Russian.

[5] W. A. Coppel, “Quadratic systems with a degenerate critical point”, Bull. Austral. Math. Soc., 38 (1988), 1–10 | DOI | MR | Zbl

[6] W. A. Coppel, “Some quadratic systems with at most one limit cycle”, Dynamics Reported, 2 (1989), 61–88 | MR | Zbl

[7] A. Gasull, H. Giacomini, “A new criterion for controling the number of limit cycles of some generalized Liénard equations”, J. Differential Equations, 185 (2002), 54–73 | DOI | MR | Zbl

[8] E. A. González Velasco, “Generic properties of polynomial vector fields at infinity”, Trans. Amer. Math. Soc., 143 (1969), 201–222 | DOI | MR | Zbl

[9] A. A. Grin, L. A. Cherkas, “Dulac function for Lienard Systems”, Proc. of Inst. Mathematics Belarus Nat. Sc. Academy, 4 (2000), 29–38 (in Russian) | Zbl

[10] H. Giacomini, S. Neukirch, “Number of limit cycles for the Lienard equation”, Physical Review E, 56 (1997), 3809–3813 | DOI | MR

[11] Chengzhi Li, “Two problems of planar quadratic systems”, Scientia Sinica, 26 (1983), 471–481 | MR | Zbl

[12] J. Llibre, D. Schlomiuk, “The geometry of quadratic differential systems with a weak focus of third order”, Canadian J. of Math., 56:2 (2004), 310–343 | MR | Zbl

[13] M. Mieussens, “Sur les cycles limites des systemes quadratiques”, C. R. Acad. Sci. Paris, Serie A, 291 (1980), 337–340 | MR | Zbl

[14] L. M. Perko, “Rotated vector fields and the global behavior of limit cycles for a class of quadratic systems in the plane”, J. Differential Equations, 18 (1975), 63–86 | DOI | MR | Zbl

[15] L. M. Perko, “Limit cycles of quadratic systems in the plane”, Rocky Mountain J. of Math., 14 (1984), 619–644 | MR

[16] L. M. Perko, Shu Shih-lung, “Existence, uniqueness and non-existence of limit cycles for a class of quadratic systems in the plane”, J. Differential Equations, 53 (1984), 1–26 | DOI | MR

[17] Ye Yanqian, Theory of limit cycles, Translation of Math. monographs, 66, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl

[18] A. Zegeling, R. E. Kooij, “Limit cycles in quadratic systems with a weak focus and a strong focus”, Kunggpook Math. J., 38 (1998), 323–340 | MR | Zbl

[19] A. Zegeling, R. E. Kooij, “The distribution of limit cycles in quadratic systems with four finite singularities”, J. Differential Equations, 151 (1999), 373–385 | DOI | MR | Zbl

[20] Zhang Pingguang, “On the distribution and number of limit cycles for quadratic systems with two foci”, Acta Math. Sinica, 44 (2001), 37–44 (chinese) | MR

[21] Zhang Pingguang, “On the distribution and number of limit cycles for quadratic systems with two foci”, Qualitative Theory of Dynamical Systems, 3:2 (2002), 437–463 | DOI | MR | Zbl

[22] Zhang Zhifen and others, Qualitative Theory of Differential Equations, Translation of Math. Monographs, 101, Amer. Math. Soc., Providence, RI, 1992 | Zbl