Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2003_1_a1, author = {L. Gadomskii and E. Grebenikov and M. Jakubiak and D. Kozak{\textendash}Skoworodkin}, title = {The {Lyapunov} stability in restricted problems of cosmic dynamics}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {7--17}, publisher = {mathdoc}, number = {1}, year = {2003}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a1/} }
TY - JOUR AU - L. Gadomskii AU - E. Grebenikov AU - M. Jakubiak AU - D. Kozak–Skoworodkin TI - The Lyapunov stability in restricted problems of cosmic dynamics JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2003 SP - 7 EP - 17 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a1/ LA - en ID - BASM_2003_1_a1 ER -
%0 Journal Article %A L. Gadomskii %A E. Grebenikov %A M. Jakubiak %A D. Kozak–Skoworodkin %T The Lyapunov stability in restricted problems of cosmic dynamics %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2003 %P 7-17 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a1/ %G en %F BASM_2003_1_a1
L. Gadomskii; E. Grebenikov; M. Jakubiak; D. Kozak–Skoworodkin. The Lyapunov stability in restricted problems of cosmic dynamics. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 7-17. https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a1/
[1] Arnold V. I., “About stability of equilibrium positions of Hamiltonian systems in general elliptic case”, DAN USSR, 137:2 (1961), in Russian | MR
[2] Deprit A., “Limiting orbits around the equilateral centers of libration”, Astron. J., 71:2 (1966), 77–87 | DOI
[3] Moser J. K., Lectures on Hamiltonian Systems, Courant Institute of Mathematical Science, New York, 1968 | MR
[4] Markeev A. P., Libration Points in Celestial Mechanics and Cosmodynamics, Nauka, Moscow, 1978, 312 pp. (in Russian)
[5] Birkhoff G. D., Dynamical Systems, GITTL, Moscow, 1941 (in Russian)
[6] Wolfram S., The Mathematica Book, University Press, Cambridge, 1996 (1403 p.) | MR
[7] Grebenicov E. A., “Two New Dynamical Models in Celestial Mechanics”, Rom. Astron. J. Bucharest, 8:1 (1998), 13–19
[8] Giacaglia G. E. O., Perturbation methods in nonlinear systems, Springer - Verlag, New York–Heidelberg–Berlin, 1972 | MR | Zbl
[9] Poincaré H., Les méthodes nouvélles de la mécanique céleste, I–XI, Oeuvrés, Gauthier-Villars, Paris, 1916–1956
[10] Kantorovich L. V., Akilov G. P., Functional Analysis in linear spaces, Nauka, Moscow, 1959, 780 pp. (in Russian) | MR | Zbl
[11] Arnold V. I., “The small divisors and the stability problem in classical and celestial mechanics”, UMN, 18:6 (1963), 91–192 (in Russian) | MR
[12] Siegel C. L., Lectures on Celestial Mechanics, MIR, Moscow, 1959 (in Russian)
[13] Palczewski A., Ordinary Differential Equations, WNT, Warsaw, 1999, 392 pp. (Polish)
[14] Leontovich A., “Stability of Lagrange periodical solutions of restricted three body problem”, DAN USSR, 143:3 (1962), 525–528 (in Russian) | Zbl
[15] Grebenicov E. A., Kozak-Skoworodkin D., Jakubiak M., Methods of computer algebra in many-body problem, Ed. of UFP, Moscow, 2001, 213 pp. (in Russian)
[16] Sokol'sky A. G., “About stability of Hamiltonian autonome system with the resonance of first order”, J. of Appl. Math. and Mech., 41:1 (1977), 24–33 (in Russian)
[17] Grebenicov E. A., Kozak-Skoworodkin D., Jakubiak M., “On new applications of the Arnold–Moser theorem in the many-body problem”, Nonlinear Oscillations, 4:1 (2001), 35–49 | MR
[18] Grebenicov E. A., Mytropol'sky Yu. O., Ryabov Y. A., Introduction in resonant analytical dynamics, Ed. “Janus-K”, Moscow, 1999, 312 pp. (in Russian)