The Lyapunov stability in restricted problems of cosmic dynamics
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 7-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Majority of cosmic dynamical problems are described by Hamiltonian systems. In this case the Lyapunov stability problem is the toughest problem of qualitative theory, but for two freedom degrees KAM–theory (Kolmogorov–Arnold–Moser methods) allows for the complete study [1–3]. For application of Arnold–Moser theorem [4] it is necessary to make finite sequence of Poincaré–Birkhoff canonical transformations [5] for Hamiltonian normalization. With the help of Symbolic System “Mathematica” [6] we determine the conditions of Lyapunov stability and instability of equilibrium points of restricted n–body problems [7].
@article{BASM_2003_1_a1,
     author = {L. Gadomskii and E. Grebenikov and M. Jakubiak and D. Kozak{\textendash}Skoworodkin},
     title = {The {Lyapunov} stability in restricted problems of cosmic dynamics},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {7--17},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a1/}
}
TY  - JOUR
AU  - L. Gadomskii
AU  - E. Grebenikov
AU  - M. Jakubiak
AU  - D. Kozak–Skoworodkin
TI  - The Lyapunov stability in restricted problems of cosmic dynamics
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 7
EP  - 17
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a1/
LA  - en
ID  - BASM_2003_1_a1
ER  - 
%0 Journal Article
%A L. Gadomskii
%A E. Grebenikov
%A M. Jakubiak
%A D. Kozak–Skoworodkin
%T The Lyapunov stability in restricted problems of cosmic dynamics
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 7-17
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a1/
%G en
%F BASM_2003_1_a1
L. Gadomskii; E. Grebenikov; M. Jakubiak; D. Kozak–Skoworodkin. The Lyapunov stability in restricted problems of cosmic dynamics. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 7-17. https://geodesic-test.mathdoc.fr/item/BASM_2003_1_a1/

[1] Arnold V. I., “About stability of equilibrium positions of Hamiltonian systems in general elliptic case”, DAN USSR, 137:2 (1961), in Russian | MR

[2] Deprit A., “Limiting orbits around the equilateral centers of libration”, Astron. J., 71:2 (1966), 77–87 | DOI

[3] Moser J. K., Lectures on Hamiltonian Systems, Courant Institute of Mathematical Science, New York, 1968 | MR

[4] Markeev A. P., Libration Points in Celestial Mechanics and Cosmodynamics, Nauka, Moscow, 1978, 312 pp. (in Russian)

[5] Birkhoff G. D., Dynamical Systems, GITTL, Moscow, 1941 (in Russian)

[6] Wolfram S., The Mathematica Book, University Press, Cambridge, 1996 (1403 p.) | MR

[7] Grebenicov E. A., “Two New Dynamical Models in Celestial Mechanics”, Rom. Astron. J. Bucharest, 8:1 (1998), 13–19

[8] Giacaglia G. E. O., Perturbation methods in nonlinear systems, Springer - Verlag, New York–Heidelberg–Berlin, 1972 | MR | Zbl

[9] Poincaré H., Les méthodes nouvélles de la mécanique céleste, I–XI, Oeuvrés, Gauthier-Villars, Paris, 1916–1956

[10] Kantorovich L. V., Akilov G. P., Functional Analysis in linear spaces, Nauka, Moscow, 1959, 780 pp. (in Russian) | MR | Zbl

[11] Arnold V. I., “The small divisors and the stability problem in classical and celestial mechanics”, UMN, 18:6 (1963), 91–192 (in Russian) | MR

[12] Siegel C. L., Lectures on Celestial Mechanics, MIR, Moscow, 1959 (in Russian)

[13] Palczewski A., Ordinary Differential Equations, WNT, Warsaw, 1999, 392 pp. (Polish)

[14] Leontovich A., “Stability of Lagrange periodical solutions of restricted three body problem”, DAN USSR, 143:3 (1962), 525–528 (in Russian) | Zbl

[15] Grebenicov E. A., Kozak-Skoworodkin D., Jakubiak M., Methods of computer algebra in many-body problem, Ed. of UFP, Moscow, 2001, 213 pp. (in Russian)

[16] Sokol'sky A. G., “About stability of Hamiltonian autonome system with the resonance of first order”, J. of Appl. Math. and Mech., 41:1 (1977), 24–33 (in Russian)

[17] Grebenicov E. A., Kozak-Skoworodkin D., Jakubiak M., “On new applications of the Arnold–Moser theorem in the many-body problem”, Nonlinear Oscillations, 4:1 (2001), 35–49 | MR

[18] Grebenicov E. A., Mytropol'sky Yu. O., Ryabov Y. A., Introduction in resonant analytical dynamics, Ed. “Janus-K”, Moscow, 1999, 312 pp. (in Russian)