Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_2_a2, author = {Elin, Mark and Shoikhet, David}, title = {A sharpened form of the inverse function theorem}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/AUM_2019_73_2_a2/} }
Elin, Mark; Shoikhet, David. A sharpened form of the inverse function theorem. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2. https://geodesic-test.mathdoc.fr/item/AUM_2019_73_2_a2/
[1] Aizenberg, L. A., Yuzhakov, A. P., Integral Representations and Residues in Multidimensional Complex Analysis, Translations of mathematical monographs 58, AMS, Providence, R.I., 1983.
[2] Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems. Topics in Univalent Functions, Functional Equations and Semigroup Theory, Birkhauser, Basel, 2010.
[3] Elin, M., Reich, S., Shoikhet, D., Numerical Range of Holomorphic Mappings and Applications, Birkhauser, Basel, 2019.
[4] Elin, M., Shoikhet, D., Sugawa, T., Geometric properties of the nonlinear resolvent of holomorphic generators, J. Math. Anal. Appl. 483 (2020), Art. 123614.
[5] Graham, I., Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, Inc., NY–Basel, 2003.
[6] Harris, L. A., On the size of balls covered by analytic transformations, Monatshefte Math. 83 (1977), 9–23.
[7] Harris, L. A., Reich, S., Shoikhet, D., Dissipative holomorphic functions, Bloch radii, and the Schwarz Lemma, J. Analyse Math. 82 (2000), 221–232.
[8] Marx, A., Untersuchungen uber schlichte Abbildungen, Math. Ann., 107 (1933), 40–67.
[9] Mejia, D., Pommerenke, Ch., On hyperbolically convex functions, J. Geom. Anal. 10 (2000), 365–378.
[10] Noshiro, K., On the univalency of certain analytic functions, J. Fac. Sci., Hokkaido Imp. Univ. Ser. I Math. 2 (1934), 89–101.
[11] Shoikhet, D., Semigroups in Geometrical Function Theory, Kluwer Academic Publishers, Dordrecht, 2001.
[12] Strohhacker, E., Beitrage zur Theorie der schlichten Funktionen, Math. Z., 37 (1933), 356–380.
[13] Whittaker, E. T., Watson, G. N., A Course of Modern Analysis, Cambridge University Press, 1996.