A sharpened form of the inverse function theorem
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2.

Voir la notice de l'article provenant de la source Library of Science

In this note we establish an advanced version of the inverse function theorem and study some local geometrical properties like starlikeness and hyperbolic convexity of the inverse function under natural restrictions on the numerical range of the underlying mapping.
Mots-clés : Inverse function theorem, nonlinear resolvent, holomorphic function
@article{AUM_2019_73_2_a2,
     author = {Elin, Mark and Shoikhet, David},
     title = {A sharpened form of the inverse function theorem},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/AUM_2019_73_2_a2/}
}
TY  - JOUR
AU  - Elin, Mark
AU  - Shoikhet, David
TI  - A sharpened form of the inverse function theorem
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2019
VL  - 73
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AUM_2019_73_2_a2/
LA  - en
ID  - AUM_2019_73_2_a2
ER  - 
%0 Journal Article
%A Elin, Mark
%A Shoikhet, David
%T A sharpened form of the inverse function theorem
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2019
%V 73
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AUM_2019_73_2_a2/
%G en
%F AUM_2019_73_2_a2
Elin, Mark; Shoikhet, David. A sharpened form of the inverse function theorem. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2. https://geodesic-test.mathdoc.fr/item/AUM_2019_73_2_a2/

[1] Aizenberg, L. A., Yuzhakov, A. P., Integral Representations and Residues in Multidimensional Complex Analysis, Translations of mathematical monographs 58, AMS, Providence, R.I., 1983.

[2] Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems. Topics in Univalent Functions, Functional Equations and Semigroup Theory, Birkhauser, Basel, 2010.

[3] Elin, M., Reich, S., Shoikhet, D., Numerical Range of Holomorphic Mappings and Applications, Birkhauser, Basel, 2019.

[4] Elin, M., Shoikhet, D., Sugawa, T., Geometric properties of the nonlinear resolvent of holomorphic generators, J. Math. Anal. Appl. 483 (2020), Art. 123614.

[5] Graham, I., Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, Inc., NY–Basel, 2003.

[6] Harris, L. A., On the size of balls covered by analytic transformations, Monatshefte Math. 83 (1977), 9–23.

[7] Harris, L. A., Reich, S., Shoikhet, D., Dissipative holomorphic functions, Bloch radii, and the Schwarz Lemma, J. Analyse Math. 82 (2000), 221–232.

[8] Marx, A., Untersuchungen uber schlichte Abbildungen, Math. Ann., 107 (1933), 40–67.

[9] Mejia, D., Pommerenke, Ch., On hyperbolically convex functions, J. Geom. Anal. 10 (2000), 365–378.

[10] Noshiro, K., On the univalency of certain analytic functions, J. Fac. Sci., Hokkaido Imp. Univ. Ser. I Math. 2 (1934), 89–101.

[11] Shoikhet, D., Semigroups in Geometrical Function Theory, Kluwer Academic Publishers, Dordrecht, 2001.

[12] Strohhacker, E., Beitrage zur Theorie der schlichten Funktionen, Math. Z., 37 (1933), 356–380.

[13] Whittaker, E. T., Watson, G. N., A Course of Modern Analysis, Cambridge University Press, 1996.