Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2017_71_2_a7, author = {Budzy\'nska, Monika and Grzesik, Aleksandra and Kot, Mariola}, title = {The generalized {Day} norm. {Part} {II.} {Applications}}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {71}, number = {2}, year = {2017}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/AUM_2017_71_2_a7/} }
TY - JOUR AU - Budzyńska, Monika AU - Grzesik, Aleksandra AU - Kot, Mariola TI - The generalized Day norm. Part II. Applications JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2017 VL - 71 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/AUM_2017_71_2_a7/ LA - en ID - AUM_2017_71_2_a7 ER -
%0 Journal Article %A Budzyńska, Monika %A Grzesik, Aleksandra %A Kot, Mariola %T The generalized Day norm. Part II. Applications %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2017 %V 71 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/AUM_2017_71_2_a7/ %G en %F AUM_2017_71_2_a7
Budzyńska, Monika; Grzesik, Aleksandra; Kot, Mariola. The generalized Day norm. Part II. Applications. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 2. https://geodesic-test.mathdoc.fr/item/AUM_2017_71_2_a7/
[1] Ayerbe Toledano, J. M., Domınguez Benavides, T., López Acedo, G., Measures of Noncompactness in Metric Fixed Point Theory, Birkhauser, 1997.
[2] Baillon, J.-B., Schoneberg, R., Asymptotic normal structure and fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 81 (1981), 257-264.
[3] Budzyńska, M., Grzesik, A., Kot, M., The generalized Day norm. Part I. Properties, Ann. Univ. Mariae Curie-Skłodowska Sect. A 71 (2) (2017), 33-49.
[4] Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
[5] Holmes, R. B., Geometric Functional Analysis and Its Applications, Springer, 1975.
[6] Kadec, M. I., On the connection between weak and strong convergence, Dopovidi Akad. Nauk Ukrain. RSR 9 (1959), 949-952.
[7] Kirk, W. A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.
[8] Klee, V., Mappings into normed linear spaces, Fund. Math. 49 (1960/1961), 25-34.
[9] Lin, P.-K., Unconditional bases and fixed points of nonexpansive mappings, Pacific J. Math. 116 (1985), 69-76.
[10] Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I and II, Springer, 1977.
[11] Maluta, E., A diametrically complete set with empty interior in a reflexive LUR space, J. Nonlinear Conv. Anal. 18 (2017), 105-111.
[12] Maluta, E., Papini, P. L., Diametrically complete sets and normal structure, J. Math. Anal. Appl. 424 (2015), 1335-1347.
[13] Mariadoss, S. A., Soardi, P. M., A remark on asymptotic normal structure in Banach spaces, Rend. Sem. Mat. Univ. Politec. Torino 44 (1986), 393-395.
[14] Moreno, J. P., Papini, P. L., Phelps, R. R., Diametrically maximal and constant width sets in Banach spaces, Canad. J. Math. 58 (2006), 820-842.
[15] Singer, I., Bases in Banach Spaces I, Springer, 1970.
[16] Smith, M. A., Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155-161.
[17] Smith, M. A., Turett, B., A reflexive LUR Banach space that lacks normal structure, Canad. Math. Bull. 28 (1985), 492-494.