The generalized Day norm. Part II. Applications
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 2.

Voir la notice de l'article provenant de la source Library of Science

In this paper we prove that for each 1 lt; p, p̃ lt; ∞, the Banach space (l^p̃, ·_p̃) can be equivalently renormed in such a way that  the Banach space (l^p̃,·_L,α,β,p,p̃) is LUR and has a diametrically complete set with empty interior. This result extends the Maluta theorem about existence of such a set in l^2 with the Day norm. We also show that the Banach space (l^p̃,·_L,α,β,p,p̃) has the weak fixed point property for nonexpansive mappings.
Mots-clés : Diametrically complete set, Day norm, fixed point, Kadec-Klee property, LUR space, nonexpansive mapping, non-strict Opial property, 1-unconditional Schauder bases
@article{AUM_2017_71_2_a7,
     author = {Budzy\'nska, Monika and Grzesik, Aleksandra and Kot, Mariola},
     title = {The generalized {Day} norm. {Part} {II.} {Applications}},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2017},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/AUM_2017_71_2_a7/}
}
TY  - JOUR
AU  - Budzyńska, Monika
AU  - Grzesik, Aleksandra
AU  - Kot, Mariola
TI  - The generalized Day norm. Part II. Applications
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2017
VL  - 71
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AUM_2017_71_2_a7/
LA  - en
ID  - AUM_2017_71_2_a7
ER  - 
%0 Journal Article
%A Budzyńska, Monika
%A Grzesik, Aleksandra
%A Kot, Mariola
%T The generalized Day norm. Part II. Applications
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2017
%V 71
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AUM_2017_71_2_a7/
%G en
%F AUM_2017_71_2_a7
Budzyńska, Monika; Grzesik, Aleksandra; Kot, Mariola. The generalized Day norm. Part II. Applications. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 2. https://geodesic-test.mathdoc.fr/item/AUM_2017_71_2_a7/

[1] Ayerbe Toledano, J. M., Domınguez Benavides, T., López Acedo, G., Measures of Noncompactness in Metric Fixed Point Theory, Birkhauser, 1997.

[2] Baillon, J.-B., Schoneberg, R., Asymptotic normal structure and fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 81 (1981), 257-264.

[3] Budzyńska, M., Grzesik, A., Kot, M., The generalized Day norm. Part I. Properties, Ann. Univ. Mariae Curie-Skłodowska Sect. A 71 (2) (2017), 33-49.

[4] Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.

[5] Holmes, R. B., Geometric Functional Analysis and Its Applications, Springer, 1975.

[6] Kadec, M. I., On the connection between weak and strong convergence, Dopovidi Akad. Nauk Ukrain. RSR 9 (1959), 949-952.

[7] Kirk, W. A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.

[8] Klee, V., Mappings into normed linear spaces, Fund. Math. 49 (1960/1961), 25-34.

[9] Lin, P.-K., Unconditional bases and fixed points of nonexpansive mappings, Pacific J. Math. 116 (1985), 69-76.

[10] Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I and II, Springer, 1977.

[11] Maluta, E., A diametrically complete set with empty interior in a reflexive LUR space, J. Nonlinear Conv. Anal. 18 (2017), 105-111.

[12] Maluta, E., Papini, P. L., Diametrically complete sets and normal structure, J. Math. Anal. Appl. 424 (2015), 1335-1347.

[13] Mariadoss, S. A., Soardi, P. M., A remark on asymptotic normal structure in Banach spaces, Rend. Sem. Mat. Univ. Politec. Torino 44 (1986), 393-395.

[14] Moreno, J. P., Papini, P. L., Phelps, R. R., Diametrically maximal and constant width sets in Banach spaces, Canad. J. Math. 58 (2006), 820-842.

[15] Singer, I., Bases in Banach Spaces I, Springer, 1970.

[16] Smith, M. A., Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155-161.

[17] Smith, M. A., Turett, B., A reflexive LUR Banach space that lacks normal structure, Canad. Math. Bull. 28 (1985), 492-494.