A characterization of Krull rings with zero divisors
Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 119-122.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proved that a Marot ring is a Krull ring if and only if its monoid of regular elements is a Krull monoid.
Classification : 13F05
Mots-clés : Krull ring; Marot ring; divisor theory; essential valuation; discrete rank one valuation ring
@article{ARM_1993__29_1-2_a13,
     author = {Halter-Koch, Franz},
     title = {A characterization of {Krull} rings with zero divisors},
     journal = {Archivum mathematicum},
     pages = {119--122},
     publisher = {mathdoc},
     volume = {29},
     number = {1-2},
     year = {1993},
     mrnumber = {1242634},
     zbl = {0818.13011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ARM_1993__29_1-2_a13/}
}
TY  - JOUR
AU  - Halter-Koch, Franz
TI  - A characterization of Krull rings with zero divisors
JO  - Archivum mathematicum
PY  - 1993
SP  - 119
EP  - 122
VL  - 29
IS  - 1-2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ARM_1993__29_1-2_a13/
LA  - en
ID  - ARM_1993__29_1-2_a13
ER  - 
%0 Journal Article
%A Halter-Koch, Franz
%T A characterization of Krull rings with zero divisors
%J Archivum mathematicum
%D 1993
%P 119-122
%V 29
%N 1-2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ARM_1993__29_1-2_a13/
%G en
%F ARM_1993__29_1-2_a13
Halter-Koch, Franz. A characterization of Krull rings with zero divisors. Archivum mathematicum, Tome 29 (1993) no. 1-2, pp. 119-122. https://geodesic-test.mathdoc.fr/item/ARM_1993__29_1-2_a13/