Expanding the applicability of two-point Newton-like methods under generalized conditions
Applicationes Mathematicae, Tome 40 (2013) no. 1, p. 63-90.
We use a two-point Newton-like method to approximate a locally unique solution of a nonlinear equation containing a non-differentiable term in a Banach space setting. Using more precise majorizing sequences than in earlier studies, we present a tighter semi-local and local convergence analysis and weaker convergence criteria. This way we expand the applicability of these methods. Numerical examples are provided where the old convergence criteria do not hold but the new convergence criteria are satisfied.
@article{APME_2013__40_1_280061, author = {Ioannis K. Argyros and Sa{\"\i}d Hilout}, title = {Expanding the applicability of two-point {Newton-like} methods under generalized conditions}, journal = {Applicationes Mathematicae}, pages = {63-90}, volume = {40}, number = {1}, year = {2013}, zbl = {an:1283.65054}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/APME_2013__40_1_280061/} }
TY - JOUR AU - Ioannis K. Argyros AU - Saïd Hilout TI - Expanding the applicability of two-point Newton-like methods under generalized conditions JO - Applicationes Mathematicae PY - 2013 SP - 63 EP - 90 VL - 40 IS - 1 UR - https://geodesic-test.mathdoc.fr/item/APME_2013__40_1_280061/ LA - en ID - APME_2013__40_1_280061 ER -
%0 Journal Article %A Ioannis K. Argyros %A Saïd Hilout %T Expanding the applicability of two-point Newton-like methods under generalized conditions %J Applicationes Mathematicae %D 2013 %P 63-90 %V 40 %N 1 %U https://geodesic-test.mathdoc.fr/item/APME_2013__40_1_280061/ %G en %F APME_2013__40_1_280061
Ioannis K. Argyros; Saïd Hilout. Expanding the applicability of two-point Newton-like methods under generalized conditions. Applicationes Mathematicae, Tome 40 (2013) no. 1, p. 63-90. https://geodesic-test.mathdoc.fr/item/APME_2013__40_1_280061/