A frictionless contact problem for elastic-viscoplastic materials with internal state variable
Applicationes Mathematicae, Tome 40 (2013) no. 1, p. 1-20.
We study a mathematical model for frictionless contact between an elastic-viscoplastic body and a foundation. We model the material with a general elastic-viscoplastic constitutive law with internal state variable and the contact with a normal compliance condition. We derive a variational formulation of the model. We establish existence and uniqueness of a weak solution, using general results on first order nonlinear evolution equations with monotone operators and fixed point arguments. Finally, we study the dependence of the solution on perturbations of contact conditions and prove a convergence result.
@article{APME_2013__40_1_280017, author = {Lynda Selmani}, title = {A frictionless contact problem for elastic-viscoplastic materials with internal state variable}, journal = {Applicationes Mathematicae}, pages = {1-20}, volume = {40}, number = {1}, year = {2013}, zbl = {an:1271.74362}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/APME_2013__40_1_280017/} }
TY - JOUR AU - Lynda Selmani TI - A frictionless contact problem for elastic-viscoplastic materials with internal state variable JO - Applicationes Mathematicae PY - 2013 SP - 1 EP - 20 VL - 40 IS - 1 UR - https://geodesic-test.mathdoc.fr/item/APME_2013__40_1_280017/ LA - en ID - APME_2013__40_1_280017 ER -
Lynda Selmani. A frictionless contact problem for elastic-viscoplastic materials with internal state variable. Applicationes Mathematicae, Tome 40 (2013) no. 1, p. 1-20. https://geodesic-test.mathdoc.fr/item/APME_2013__40_1_280017/