A numerical approximation of non-Fickian flows with mixing length growth in porous media.
Acta Mathematica Universitatis Comenianae. New Series, Tome 70 (2001) no. 1, p. 75.

Voir la notice de l'article dans European Digital Mathematics Library

Classification : 65R20, 76S05, 76M10
Mots-clés : non-Fickian fluid flows, up-scaling, multi-phase flow, history effect, mixing length growth, mixed finite element methods, parabolic integro-differential equation, optimal order error estimate
@article{AMUC2_2001__70_1_122463,
     author = {Ewing, R.E. and Lin, Y. and Wang, J.},
     title = {A numerical approximation of {non-Fickian} flows with mixing length growth in porous media.},
     journal = {Acta Mathematica Universitatis Comenianae. New Series},
     pages = {75},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2001},
     zbl = {1007.76036},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/AMUC2_2001__70_1_122463/}
}
TY  - JOUR
AU  - Ewing, R.E.
AU  - Lin, Y.
AU  - Wang, J.
TI  - A numerical approximation of non-Fickian flows with mixing length growth in porous media.
JO  - Acta Mathematica Universitatis Comenianae. New Series
PY  - 2001
SP  - 75
VL  - 70
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AMUC2_2001__70_1_122463/
LA  - en
ID  - AMUC2_2001__70_1_122463
ER  - 
%0 Journal Article
%A Ewing, R.E.
%A Lin, Y.
%A Wang, J.
%T A numerical approximation of non-Fickian flows with mixing length growth in porous media.
%J Acta Mathematica Universitatis Comenianae. New Series
%D 2001
%P 75
%V 70
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AMUC2_2001__70_1_122463/
%G en
%F AMUC2_2001__70_1_122463
Ewing, R.E.; Lin, Y.; Wang, J. A numerical approximation of non-Fickian flows with mixing length growth in porous media.. Acta Mathematica Universitatis Comenianae. New Series, Tome 70 (2001) no. 1, p. 75. https://geodesic-test.mathdoc.fr/item/AMUC2_2001__70_1_122463/