Almost commutative varieties of associative rings and algebras over a~finite field
Algebra i logika, Tome 52 (2013) no. 6, pp. 731-768.

Voir la notice de l'article provenant de la source Math-Net.Ru

Associative algebras over an associative commutative ring with unity are considered. A variety of algebras is said to be permutative if it satisfies an identity of the form $$ x_1x_2\cdots x_n=x_{1\sigma}x_{2\sigma}\cdots x_{n\sigma}, $$ where σ is a nontrivial permutation on a set {1,2,,n}. Minimal elements in the lattice of all nonpermutative varieties are called almost permutative varieties. By Zorn's lemma, every nonpermutative variety contains an almost permutative variety as a subvariety. We describe almost permutative varieties of algebras over a finite field and almost commutative varieties of rings. In [Algebra Logika, 51, No. 6, 783–804 (2012)], such varieties were characterized for the case of algebras over an infinite field.
Mots-clés : varieties of associative algebras, PI-algebras, permutation identity, almost commutative (permutative) varieties.
@article{AL_2013_52_6_a4,
     author = {O. B. Finogenova},
     title = {Almost commutative varieties of associative rings and algebras over a~finite field},
     journal = {Algebra i logika},
     pages = {731--768},
     publisher = {mathdoc},
     volume = {52},
     number = {6},
     year = {2013},
     language = {ru},
     url = {https://geodesic-test.mathdoc.fr/item/AL_2013_52_6_a4/}
}
TY  - JOUR
AU  - O. B. Finogenova
TI  - Almost commutative varieties of associative rings and algebras over a~finite field
JO  - Algebra i logika
PY  - 2013
SP  - 731
EP  - 768
VL  - 52
IS  - 6
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AL_2013_52_6_a4/
LA  - ru
ID  - AL_2013_52_6_a4
ER  - 
%0 Journal Article
%A O. B. Finogenova
%T Almost commutative varieties of associative rings and algebras over a~finite field
%J Algebra i logika
%D 2013
%P 731-768
%V 52
%N 6
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AL_2013_52_6_a4/
%G ru
%F AL_2013_52_6_a4
O. B. Finogenova. Almost commutative varieties of associative rings and algebras over a~finite field. Algebra i logika, Tome 52 (2013) no. 6, pp. 731-768. https://geodesic-test.mathdoc.fr/item/AL_2013_52_6_a4/

[1] M. Yamada, N. Kimura, “Note on idempotent semigroups. II”, Proc. Japan. Acad., 34:2 (1958), 110–112 | DOI | MR | Zbl

[2] V. N. Latyshev, “O shpekhtovosti nekotorykh mnogoobrazii assotsiativnykh algebr”, Algebra i logika, 8:6 (1969), 660–673 | Zbl

[3] A. N. Krasilnikov, “O konechnosti bazisa tozhdestv nekotorykh mnogoobrazii assotsiativnykh kolets”, Algebraicheskie sistemy, Mezhvuz. sb. nauch. tr., Ivanovo, 1991, 18–26 | MR

[4] T. E. Nordahl, “On permutative semigroup algebras”, Algebra Univers., 25:3 (1988), 322–333 | DOI | MR | Zbl

[5] O. B. Finogenova, “Pochti perestanovochnye mnogoobraziya assotsiativnykh algebr nad beskonechnym polem”, Algebra i logika, 51:6 (2012), 783–804 | MR | Zbl

[6] O. B. Paison, “Perestanovochnye psevdomnogoobraziya assotsiativnykh algebr nad konechnym polem”, Izv. vuzov. Matem., 1995, no. 1, 71–79 | MR | Zbl

[7] Yu. N. Maltsev, “Pochti kommutativnye mnogoobraziya assotsiativnykh kolets”, Sib. matem. zh., 17:5 (1976), 1086–1096 | MR

[8] E. N. Zakharova, “Pochti kommutativnye nilpotentnye mnogoobraziya algebr”, Izv. AN Mold SSR. Ser. fiz.-tekhn. matem. n., 1982, no. 1, 3–10 | MR | Zbl

[9] Yu. N. Mal'cev, “Just non commutative varieties of operator algebras and rings with some conditions on nilpotent elements”, Tamkang J. Math., 27:1 (1996), 59–65 | MR

[10] E. P. Petrov, Stroenie konechnomernykh nilpotentnykh algebr i ikh tozhdestva, Diss. kand. fiz.-matem. n., Barnaul, 1996

[11] A. N. Oleksenko, “Pochti kommutativnye nilpotentnye indeksa 4 mnogoobraziya kolets”, Izv. Alt. gos. un-ta, 2001, no. 1(19), 30–33 | Zbl

[12] N. Dzhekobson, Stroenie kolets, IL, M., 1961

[13] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR

[14] I. V. Lvov, Teorema Brauna o radikale konechnoporozhdennoi PI-algebry, Preprint No 63, In-t matem. SO AN SSSR, Novosibirsk, 1984

[15] S. I. Kublanovskii, “O mnogoobraziyakh assotsiativnykh algebr s lokalnymi usloviyami konechnosti”, Algebra i analiz, 9:4 (1997), 119–174 | MR | Zbl

[16] O. B. Finogenova, “Mnogoobraziya assotsiativnykh algebr, udovletvoryayuschie tozhdestvam Engelya”, Algebra i logika, 43:4 (2004), 482–505 | MR | Zbl