SL2 over complex quadratic number fields.~I
Algebra i logika, Tome 17 (1978) no. 5, pp. 512-580.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study some congruence subgroups of PSL2(σ) where σ is the ring of integers in k=Q(d). For decomposed primes, and for d=1,3, there is a certain compact oriented closed topological 3-manifold which occurs naturally. Its fundamental group is a quotient of the subgroup. We define an adjusted version of the Hecke algebra which is an algebra of endomorphisms of the commutator quotient group. There seems to exist many subgroups for which the commutator quotient group has rank one. For one such case, we exhibit an elliptic curve, defined over k, which seems to have the property that its Hasse–Weil ζ-function coincides with the Dirichlet series arising from the Hecke algebra. In the last part, we show that one can adopt a topological method of H. Zimmert, and obtain estimates for congruence subgroups of inert primes.
@article{AL_1978_17_5_a1,
     author = {F. Grunewald and H. Helling and J. Mennicke},
     title = {${\rm SL}_{2}$ over complex quadratic number {fields.~I}},
     journal = {Algebra i logika},
     pages = {512--580},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {1978},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/AL_1978_17_5_a1/}
}
TY  - JOUR
AU  - F. Grunewald
AU  - H. Helling
AU  - J. Mennicke
TI  - ${\rm SL}_{2}$ over complex quadratic number fields.~I
JO  - Algebra i logika
PY  - 1978
SP  - 512
EP  - 580
VL  - 17
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/AL_1978_17_5_a1/
LA  - en
ID  - AL_1978_17_5_a1
ER  - 
%0 Journal Article
%A F. Grunewald
%A H. Helling
%A J. Mennicke
%T ${\rm SL}_{2}$ over complex quadratic number fields.~I
%J Algebra i logika
%D 1978
%P 512-580
%V 17
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/AL_1978_17_5_a1/
%G en
%F AL_1978_17_5_a1
F. Grunewald; H. Helling; J. Mennicke. ${\rm SL}_{2}$ over complex quadratic number fields.~I. Algebra i logika, Tome 17 (1978) no. 5, pp. 512-580. https://geodesic-test.mathdoc.fr/item/AL_1978_17_5_a1/