Representations of strongly algebraically closed algebras
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 130-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of q-compactness for MV-algebras. One of the main results of the paper is a characterization of a class of orthomodular lattices that are horizontal sums of strongly algebraically closed algebras.
Keywords: Sheffer stroke basic algebra, strongly algebraically closed algebra, algebraic realizations, MV-algebra, q-compact algebra.
Mots-clés : horizontal sum
@article{ADM_2019_28_1_a9,
     author = {A. Molkhasi and K. P. Shum},
     title = {Representations of strongly algebraically closed algebras},
     journal = {Algebra and discrete mathematics},
     pages = {130--143},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a9/}
}
TY  - JOUR
AU  - A. Molkhasi
AU  - K. P. Shum
TI  - Representations of strongly algebraically closed algebras
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 130
EP  - 143
VL  - 28
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a9/
LA  - en
ID  - ADM_2019_28_1_a9
ER  - 
%0 Journal Article
%A A. Molkhasi
%A K. P. Shum
%T Representations of strongly algebraically closed algebras
%J Algebra and discrete mathematics
%D 2019
%P 130-143
%V 28
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a9/
%G en
%F ADM_2019_28_1_a9
A. Molkhasi; K. P. Shum. Representations of strongly algebraically closed algebras. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 130-143. https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a9/

[1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., XXV, Providence, 1967 | MR | Zbl

[2] G. Bruns and R. Greechie, “Blocks and commutators in orthomodular lattices”, Algebra Universalis, 27 (1990), 1–9 | DOI | MR | Zbl

[3] S. Balcerzyk, “On algebraically compact groups of I. Kaplansky”, Fund. Math., 44 (1957), 91–93 | DOI | MR | Zbl

[4] R. A. Borzooei, W. A. Dudek, A. Radfar, and Q. Zahiri, “Some results in hyper MV-algebras”, J. Intelligent and Fuzzy Systems, 6:27 (2014), 2997–3004 | DOI | MR

[5] I. Chajda, “Horizontal sum of basic algebras”, Discussiones Mathematicae, General Algebra and Applications, 29 (2009), 21–33 | DOI | MR | Zbl

[6] I. Chajda, R. Halas, and J. Kuhr, Semilattice structures, Heldermann Verlag, Lemgo (Germany), 2007, 228 pp. | MR | Zbl

[7] I. Chajda, “Basic algebras and their applications. An overview”, Proc., 81st Workshop on General Algebra (Salzburg, Austria, 2011), eds. J. Czermak et al., Johannes Heyn, Klagenfurt, 2012, 110 | MR

[8] C. C. Chang, “A new proof of the completeness of the Łukasiewicz axioms”, Trans. Amer. Math. Soc., 93 (1959), 74–80 | MR | Zbl

[9] C. C. Chang, “Algebraic analysis of many-valued logics”, Trans. Amer. Math. Soc., 88 (1958), 467–490 | DOI | MR | Zbl

[10] W. Chen and W. A. Dudek, “The representation of square root quasi-pseudo-MV algebras”, Soft Computing, 19 (2015), 269–282 | DOI | Zbl

[11] W. Chen and W. A. Dudek, “Quantum computational algebra with a non-commutative generalization”, Math. Slovaca, 66 (2016), 19–34 | MR | Zbl

[12] W. Chen and W. A. Dudek, “Ideals and congruences in quasi-pseudo-MV algebras”, Soft Computing, 22 (2018), 3879–3899 | DOI

[13] W. Chen and W. A. Dudek, “States, state operators and quasi-pseudo-MV algebras”, Soft Computing, 22 (2018), 8025–8040 | DOI | Zbl

[14] W. Chen and B. Davvaz, “Some classes of quasi-pseudo MV-algebras”, Logic Journal of the IGPL, 5:24 (2016), 655–859 | DOI | MR

[15] R. Cignoli, I. M. L. Dottaviano, and D. Mundici, Foundations of many-valued reasoning, Trends Log. Stud. Log. Libr., Kluwer, Dordrecht, 2000 | MR | Zbl

[16] R. Cignoli, “Boolean products of MV-algebras: Hypernormal MV-algebras”, J. Math. Analysis and Applications, 199:3 (1996), 637–653 | DOI | MR | Zbl

[17] R. Cignoli, I. M. L. Dottaviano, and D. Mundici, Algebraic foundations of many-valued reasoning, Trends in Logic, 7, Kluwer Academic Publishers, Dordrecht, 2000 | DOI | MR | Zbl

[18] E. Daniyarova, A. Miasnikov, and V. Remeslennikov, “Unification theorems in algebraic geometry”, Algebra and Discrete Mathematics, 1, 2008, 80–111 | MR | Zbl

[19] M. Dalla Chiara, R. Giuntini, and R. Greechie, Reasoning in Quantum Theory: Sharp and unsharp quantum logics, Kluwer academic publishers, 2004 | MR | Zbl

[20] P. Daowu, “Fuzzy logic algebras on residuated lattices”, Southeast Asian Bull. Math., 28:3 (2004), 519–531 | MR | Zbl

[21] C. N. Delzell and J. J. Madden, “A completely normal spectral space that is not a real spectrum”, J. Algebra, 169:1 (1994), 71–77 | DOI | MR | Zbl

[22] A. Di Nola and A. Lettieri, “Equational characterization of all varieties of MV-algebras”, J. Algebra, 221 (1999), 463–474 | DOI | MR | Zbl

[23] E. J. Dubuc and Y. A. Povedc, “Representation theory of MV-algebras”, Annals of Pure and Applied Logics, 8:161 (2010), 1024–1046 | DOI | MR | Zbl

[24] A. Dvurecenskij, “States on pseudo MV-algebras”, Studia Logica, 68 (2001), 301–327 | DOI | MR | Zbl

[25] A. Dvurecenskij and S. Pulmannova, New trends in quantum structures, Kluwer Academic Publ., Dordrecht; Ister Science, Bratislava, 2000, 541+xvi pp. | MR | Zbl

[26] E. Fried, G. E. Hansoul, E. T. Schmidt, and J. C. Varlet, “Perfect distributive lattices”, Proceedings of the Vienna Conference (June 1984), Contributions to Algebra, 3, Teubner, Stuttgart, 1985, 125–142

[27] G. Gratzer, General lattice theory, Pure and Applied Mathematics, 75, Academic Press, New York, 1978 | MR | Zbl

[28] R. J. Greechie, “Sites and tours in orthoalgebras and orthomodular lattices”, Foundations of Physics, 20:7 (1990), 915–923 | DOI | MR

[29] P. Hajek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, 1998 | MR | Zbl

[30] J. Harding and M. Navara, “Subalgebras of orthomodular lattices”, Order, 28 (2011), 549–563 | DOI | MR | Zbl

[31] C. S. Hoo, “Topological MV-algebras”, Topology Appl., 81 (1997), 103–121 | DOI | MR | Zbl

[32] G. Kalmbach, Orthomodular lattices, Academic Press, London, 1983 | MR | Zbl

[33] J. Łukasiewicz, “Philosophical remarks on many-valued systems of propositional logic”, Selected Works, eds. L. Borkowski, North-Holland, Amsterdam, 197, 153–178 | MR

[34] J. Łoś, “On algebraic proof of completeness for the two-valued propositional calculus”, Colloq. Math., 2 (1951), 271–274 | DOI | MR | Zbl

[35] J. Łoś, “On the categoricity in power of elementary deductive systems and some related problems”, Colloq. Math., 3 (1954), 58–62 | DOI | MR | Zbl

[36] D. Mundici, “A characterization of the free $n$-generated MV-algebra”, Archive for Mathematical Logic, 45 (2006), 239–247 | DOI | MR | Zbl

[37] A. Myasnikov and V. Remeslennikov, “Algebraic geometry over groups II: logical foundations”, J. Algebra, 234 (2000), 225–276 | DOI | MR | Zbl

[38] A. Monteiro, “Larithmetique des filtres et les spaces topologiques, I, II”, Notas Logica Mat., 197, 29–30

[39] A. Molkhasi, “On strrongly algebraically closed lattices”, J. Sib. Fed. Univ. Math. Phys., 9:2 (2016), 202–208 | DOI | MR | Zbl

[40] A. Moshen Badawy and K. P. Shum, “Congruences and Boolean filters of quasi-modular $p$-algebras”, Discuss. Math Gen. Algebra Appl., 34 (2014), 109–123 | DOI | MR

[41] J. B. Nganou, “Stone MV-algebras and strongly complete MV-algebras”, Algebra Universalis, 77:2 (2017), 147–161 | DOI | MR | Zbl

[42] T. Oner and I. Senturk, “The Sheffer stroke operation reducts of basic algebras”, Open Math., 15 (2017), 926–935 | DOI | MR | Zbl

[43] B. Plotkin, “Algebras with the same (algebraic) geometry”, Proc. Steklov Inst. Math., 242 (2003), 165–196 | MR | Zbl

[44] W. Rump, “Quantum B-algebras”, Central European Journal of Mathematics, 11:11 (2013), 1881–1899 | MR | Zbl

[45] D. Simson, “On pure global dimension of locally finitely presented Grothendieck categories”, Fund. Math., 96 (1977), 91–116 | DOI | MR | Zbl

[46] A. Shevlyakov, “Algebraic geometry over Boolean algebras in the language with constants”, J. Math. Sciences, 206 (2015), 724–757 | DOI

[47] H. Sheffer, “A set of five independent postulates for Boolean algebras, with application to logical constants”, Trans. Amer. Math. Soc., 14:4 (1913), 481–488 | DOI | MR | Zbl

[48] D. Sachs, “The lattice of subalgebras of a Boolean algebra”, Canad. J. Math., 14 (1962), 451–460 | DOI | MR | Zbl

[49] J. Schmid, “Algebraically and existentially closed distributive lattices”, Zeitschr Math. Logik U.G.M., 25 (1979), 525–530 | DOI | MR | Zbl

[50] D. P. Strauss, “Topological lattices”, Proc. London Math. Soc., 3:18 (1968), 217–230 | DOI | MR | Zbl

[51] S. Solovyov, “From quantale algebroids to topological spaces: fixed-and variable-basis approaches”, Fuzzy Sets Syst., 161:9 (2010), 1270–1287 | DOI | MR | Zbl