Lie algebras of derivations with large abelian ideals
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 123-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let K be a field of characteristic zero, A=K[x1,,xn] the polynomial ring and R=K(x1,,xn) the field of rational functions. The Lie algebra W~n(K):=DerKR of all K-derivation on R is a vector space (of dimension n) over R and every its subalgebra L has rank rkRL=dimRRL. We study subalgebras L of rank m over R of the Lie algebra W~n(K) with an abelian ideal IL of the same rank m over R. Let F be the field of constants of L in R. It is proved that there exist a basis D1,,Dm of FI over F, elements a1,,akR such that Di(aj)=δij, i=1,,m, j=1,,k, and every element DFL is of the form D=i=1mfi(a1,,ak)Di for some fiF[t1,,tk], degfi1. As a consequence it is proved that L is isomorphic to a subalgebra (of a very special type) of the general affine Lie algebra affm(F).
Mots-clés : Lie algebra, vector field, polynomial ring, abelian ideal, derivation.
@article{ADM_2019_28_1_a8,
     author = {I. S. Klymenko and S. V. Lysenko and A. P. Petravchuk},
     title = {Lie algebras of derivations with large abelian ideals},
     journal = {Algebra and discrete mathematics},
     pages = {123--129},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a8/}
}
TY  - JOUR
AU  - I. S. Klymenko
AU  - S. V. Lysenko
AU  - A. P. Petravchuk
TI  - Lie algebras of derivations with large abelian ideals
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 123
EP  - 129
VL  - 28
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a8/
LA  - en
ID  - ADM_2019_28_1_a8
ER  - 
%0 Journal Article
%A I. S. Klymenko
%A S. V. Lysenko
%A A. P. Petravchuk
%T Lie algebras of derivations with large abelian ideals
%J Algebra and discrete mathematics
%D 2019
%P 123-129
%V 28
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a8/
%G en
%F ADM_2019_28_1_a8
I. S. Klymenko; S. V. Lysenko; A. P. Petravchuk. Lie algebras of derivations with large abelian ideals. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 123-129. https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a8/

[1] Ie.Chapovskyi, D.Efimov, A.Petravchuk, “Solvable Lie algebras of derivations of polynomial rings in three variables”, Applied problems of Mechanics and Mathematics, 16, Lviv, 2018, 7–13

[2] A. González-López, N. Kamran and P. J. Olver, “Lie algebras of differential operators in two complex variables”, Amer. J. Math., 114 (1992), 1163–1185 | DOI | MR | Zbl

[3] Ie. O. Makedonskyi and A. P. Petravchuk, “On nilpotent and solvable Lie algebras of derivations”, J. Algebra, 401 (2014), 245–257 | DOI | MR | Zbl

[4] I. S. Klimenko, S. V. Lysenko, A. P. Petravchuk, “Lie algebras of derivations with abelian ideals of maximal rank”, Uzhgorod University, 31:2 (2017), 83–90 (in Ukrainian) | MR

[5] A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994 | MR | Zbl

[6] A. Nowicki, “Commutative basis of derivations in polynomial and power series rings”, J. Pure Appl. Algebra, 40 (1986), 279–283 | DOI | MR

[7] S. Lie, Theorie der Transformationsgruppen, v. 3, Leipzig, 1893 | Zbl