Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_28_1_a8, author = {I. S. Klymenko and S. V. Lysenko and A. P. Petravchuk}, title = {Lie algebras of derivations with large abelian ideals}, journal = {Algebra and discrete mathematics}, pages = {123--129}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a8/} }
TY - JOUR AU - I. S. Klymenko AU - S. V. Lysenko AU - A. P. Petravchuk TI - Lie algebras of derivations with large abelian ideals JO - Algebra and discrete mathematics PY - 2019 SP - 123 EP - 129 VL - 28 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a8/ LA - en ID - ADM_2019_28_1_a8 ER -
I. S. Klymenko; S. V. Lysenko; A. P. Petravchuk. Lie algebras of derivations with large abelian ideals. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 123-129. https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a8/
[1] Ie.Chapovskyi, D.Efimov, A.Petravchuk, “Solvable Lie algebras of derivations of polynomial rings in three variables”, Applied problems of Mechanics and Mathematics, 16, Lviv, 2018, 7–13
[2] A. González-López, N. Kamran and P. J. Olver, “Lie algebras of differential operators in two complex variables”, Amer. J. Math., 114 (1992), 1163–1185 | DOI | MR | Zbl
[3] Ie. O. Makedonskyi and A. P. Petravchuk, “On nilpotent and solvable Lie algebras of derivations”, J. Algebra, 401 (2014), 245–257 | DOI | MR | Zbl
[4] I. S. Klimenko, S. V. Lysenko, A. P. Petravchuk, “Lie algebras of derivations with abelian ideals of maximal rank”, Uzhgorod University, 31:2 (2017), 83–90 (in Ukrainian) | MR
[5] A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994 | MR | Zbl
[6] A. Nowicki, “Commutative basis of derivations in polynomial and power series rings”, J. Pure Appl. Algebra, 40 (1986), 279–283 | DOI | MR
[7] S. Lie, Theorie der Transformationsgruppen, v. 3, Leipzig, 1893 | Zbl