Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_28_1_a7, author = {Phaisatcha Inpoonjai and Thiradet Jiarasuksakun}, title = {On the existence of degree-magic labellings of the $n$-fold self-union of complete bipartite graphs}, journal = {Algebra and discrete mathematics}, pages = {107--122}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a7/} }
TY - JOUR AU - Phaisatcha Inpoonjai AU - Thiradet Jiarasuksakun TI - On the existence of degree-magic labellings of the $n$-fold self-union of complete bipartite graphs JO - Algebra and discrete mathematics PY - 2019 SP - 107 EP - 122 VL - 28 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a7/ LA - en ID - ADM_2019_28_1_a7 ER -
%0 Journal Article %A Phaisatcha Inpoonjai %A Thiradet Jiarasuksakun %T On the existence of degree-magic labellings of the $n$-fold self-union of complete bipartite graphs %J Algebra and discrete mathematics %D 2019 %P 107-122 %V 28 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a7/ %G en %F ADM_2019_28_1_a7
Phaisatcha Inpoonjai; Thiradet Jiarasuksakun. On the existence of degree-magic labellings of the $n$-fold self-union of complete bipartite graphs. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 107-122. https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a7/
[1] J. Sedláček, “Theory of graphs and its applications”, Problem 27, Proc. Symp. Smolenice, Praha, 1963, 163–164
[2] B. M. Stewart, “Magic graphs”, Canad. J. Math., 18 (1966), 1031–1059 | DOI | MR | Zbl
[3] J. A. Gallian, “A dynamic survey of graph labeling”, Electron. J. Combin., 16 (2009), DS6 | MR
[4] L'. Bezegová, J. Ivančo, “An extension of regular supermagic graphs”, Discrete Math., 310 (2010), 3571–3578 | DOI | MR | Zbl
[5] L'. Bezegová, J. Ivančo, “A characterization of complete tripartite degree-magic graphs”, Discuss. Math. Graph Theory, 32 (2012), 243–253 | DOI | MR | Zbl
[6] L'. Bezegová, J. Ivančo, “On conservative and supermagic graphs”, Discrete Math., 311 (2011), 2428–2436 | DOI | MR | Zbl
[7] L'. Bezegová, J. Ivančo, “Number of edges in degree-magic graphs”, Discrete Math., 313 (2013), 1349–1357 | DOI | MR | Zbl
[8] L'. Bezegová, “Balanced degree-magic complements of bipartite graphs”, Discrete Math., 313 (2013), 1918–1923 | DOI | MR | Zbl
[9] T. Harmuth, “Über magische Quadrate und ähniche Zahlenfiguren”, Arch. Math. Phys., 66 (1881), 286–313
[10] T. Harmuth, “Über magische Rechtecke mit ungeraden Seitenzahlen”, Arch. Math. Phys., 66 (1881), 413–447
[11] R. Sun, “Existence of magic rectangles”, Nei Mongol Daxue Xuebao Ziran Kexue, 21:1 (1990), 10–16 | MR | Zbl
[12] T. Bier, G. Rogers, “Balanced Magic Rectangles”, European J. Combin., 14 (1993), 285–299 | DOI | MR | Zbl
[13] T. Bier, A. Kleinschmidt, “Centrally symmetric and magic rectangles”, Discrete Math., 176 (1997), 29–42 | DOI | MR | Zbl
[14] T. R. Hagedorn, “Magic rectangles revisited”, Discrete Math., 207 (1999), 65–72 | DOI | MR | Zbl
[15] T. R. Hagedorn, “On the existence of magic $n$-dimensional rectangles”, Discrete Math., 207 (1999), 53–63 | DOI | MR | Zbl