On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 107-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there exists a labelling of the edges by integers 1,2,,|E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to (1+|E(G)|)deg(v)/2. Degree-magic graphs extend supermagic regular graphs. In this paper, we present a general proof of the necessary and sufficient conditions for the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs. We apply this existence to construct supermagic regular graphs and to identify the sufficient condition for even n-tuple magic rectangles to exist.
Mots-clés : regular graphs, bipartite graphs, tripartite graphs, supermagic graphs, degree-magic graphs, balanced degree-magic graphs, magic rectangles.
@article{ADM_2019_28_1_a7,
     author = {Phaisatcha Inpoonjai and Thiradet Jiarasuksakun},
     title = {On the existence of degree-magic labellings of the $n$-fold self-union of complete bipartite graphs},
     journal = {Algebra and discrete mathematics},
     pages = {107--122},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a7/}
}
TY  - JOUR
AU  - Phaisatcha Inpoonjai
AU  - Thiradet Jiarasuksakun
TI  - On the existence of degree-magic labellings of the $n$-fold self-union of complete bipartite graphs
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 107
EP  - 122
VL  - 28
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a7/
LA  - en
ID  - ADM_2019_28_1_a7
ER  - 
%0 Journal Article
%A Phaisatcha Inpoonjai
%A Thiradet Jiarasuksakun
%T On the existence of degree-magic labellings of the $n$-fold self-union of complete bipartite graphs
%J Algebra and discrete mathematics
%D 2019
%P 107-122
%V 28
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a7/
%G en
%F ADM_2019_28_1_a7
Phaisatcha Inpoonjai; Thiradet Jiarasuksakun. On the existence of degree-magic labellings of the $n$-fold self-union of complete bipartite graphs. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 107-122. https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a7/

[1] J. Sedláček, “Theory of graphs and its applications”, Problem 27, Proc. Symp. Smolenice, Praha, 1963, 163–164

[2] B. M. Stewart, “Magic graphs”, Canad. J. Math., 18 (1966), 1031–1059 | DOI | MR | Zbl

[3] J. A. Gallian, “A dynamic survey of graph labeling”, Electron. J. Combin., 16 (2009), DS6 | MR

[4] L'. Bezegová, J. Ivančo, “An extension of regular supermagic graphs”, Discrete Math., 310 (2010), 3571–3578 | DOI | MR | Zbl

[5] L'. Bezegová, J. Ivančo, “A characterization of complete tripartite degree-magic graphs”, Discuss. Math. Graph Theory, 32 (2012), 243–253 | DOI | MR | Zbl

[6] L'. Bezegová, J. Ivančo, “On conservative and supermagic graphs”, Discrete Math., 311 (2011), 2428–2436 | DOI | MR | Zbl

[7] L'. Bezegová, J. Ivančo, “Number of edges in degree-magic graphs”, Discrete Math., 313 (2013), 1349–1357 | DOI | MR | Zbl

[8] L'. Bezegová, “Balanced degree-magic complements of bipartite graphs”, Discrete Math., 313 (2013), 1918–1923 | DOI | MR | Zbl

[9] T. Harmuth, “Über magische Quadrate und ähniche Zahlenfiguren”, Arch. Math. Phys., 66 (1881), 286–313

[10] T. Harmuth, “Über magische Rechtecke mit ungeraden Seitenzahlen”, Arch. Math. Phys., 66 (1881), 413–447

[11] R. Sun, “Existence of magic rectangles”, Nei Mongol Daxue Xuebao Ziran Kexue, 21:1 (1990), 10–16 | MR | Zbl

[12] T. Bier, G. Rogers, “Balanced Magic Rectangles”, European J. Combin., 14 (1993), 285–299 | DOI | MR | Zbl

[13] T. Bier, A. Kleinschmidt, “Centrally symmetric and magic rectangles”, Discrete Math., 176 (1997), 29–42 | DOI | MR | Zbl

[14] T. R. Hagedorn, “Magic rectangles revisited”, Discrete Math., 207 (1999), 65–72 | DOI | MR | Zbl

[15] T. R. Hagedorn, “On the existence of magic $n$-dimensional rectangles”, Discrete Math., 207 (1999), 53–63 | DOI | MR | Zbl