Additivity of elementary maps on alternative rings
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 94-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let R and R be alternative rings. In this article we investigate the additivity of surjective elementary maps of R×R. As a main theorem, we prove that if R contains a non-trivial idempotent satisfying some conditions, these maps are additive.
Mots-clés : elementary maps, alternative rings, additivity.
@article{ADM_2019_28_1_a6,
     author = {B. L. M. Ferreira},
     title = {Additivity of elementary maps on alternative rings},
     journal = {Algebra and discrete mathematics},
     pages = {94--106},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a6/}
}
TY  - JOUR
AU  - B. L. M. Ferreira
TI  - Additivity of elementary maps on alternative rings
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 94
EP  - 106
VL  - 28
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a6/
LA  - en
ID  - ADM_2019_28_1_a6
ER  - 
%0 Journal Article
%A B. L. M. Ferreira
%T Additivity of elementary maps on alternative rings
%J Algebra and discrete mathematics
%D 2019
%P 94-106
%V 28
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a6/
%G en
%F ADM_2019_28_1_a6
B. L. M. Ferreira. Additivity of elementary maps on alternative rings. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 94-106. https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a6/

[1] K. I. Beidar, A. V. Mikhalev and A. M. Slinko, “A criterion for non-degenerate alternative and Jordan algebras to be prime”, Tr. Mosk. Mat. O.-va, 50 (198), 130–137 (Russian) | MR | Zbl

[2] J. C. M. Ferreira and H. Guzzo Jr., “Jordan Elementary Maps on Alternative Rings”, Comm. Algebra, 42:2 (2014), 779–794 | DOI | MR | Zbl

[3] I. R. Hentzel, E. Kleinfeld and H. F. Smith, “Alternative Rings with Idempotent”, J. Algebra, 64:2 (1980), 325–335 | DOI | MR | Zbl

[4] P. Li and F. Lu, “Additivity of Elementary Maps on Rings”, Comm. Algebra, 32 (2004), 3725–3737 | DOI | MR | Zbl

[5] W. S. Martindale III, “When are multiplicative mappings additive?”, Proc. Amer. Math. Soc., 21 (1969), 695–698 | DOI | MR | Zbl

[6] M. Slater, “Prime alternative rings I”, J. Algebra, 15 (1970), 229–243 | DOI | MR | Zbl

[7] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative, Inst. Math. Acad. Sci. of the USSR, Siberian Branch Novosibirsk, New York; USSR, Academic Press, 1982 | MR