Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_28_1_a6, author = {B. L. M. Ferreira}, title = {Additivity of elementary maps on alternative rings}, journal = {Algebra and discrete mathematics}, pages = {94--106}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a6/} }
B. L. M. Ferreira. Additivity of elementary maps on alternative rings. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 94-106. https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a6/
[1] K. I. Beidar, A. V. Mikhalev and A. M. Slinko, “A criterion for non-degenerate alternative and Jordan algebras to be prime”, Tr. Mosk. Mat. O.-va, 50 (198), 130–137 (Russian) | MR | Zbl
[2] J. C. M. Ferreira and H. Guzzo Jr., “Jordan Elementary Maps on Alternative Rings”, Comm. Algebra, 42:2 (2014), 779–794 | DOI | MR | Zbl
[3] I. R. Hentzel, E. Kleinfeld and H. F. Smith, “Alternative Rings with Idempotent”, J. Algebra, 64:2 (1980), 325–335 | DOI | MR | Zbl
[4] P. Li and F. Lu, “Additivity of Elementary Maps on Rings”, Comm. Algebra, 32 (2004), 3725–3737 | DOI | MR | Zbl
[5] W. S. Martindale III, “When are multiplicative mappings additive?”, Proc. Amer. Math. Soc., 21 (1969), 695–698 | DOI | MR | Zbl
[6] M. Slater, “Prime alternative rings I”, J. Algebra, 15 (1970), 229–243 | DOI | MR | Zbl
[7] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative, Inst. Math. Acad. Sci. of the USSR, Siberian Branch Novosibirsk, New York; USSR, Academic Press, 1982 | MR