Cohen--Macaulay modules over the plane curve singularity of type T44,~II
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 75-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We accomplish the classification of Cohen–Macaulay modules over the curve singularities of type T44 and the description of the corresponding matrix factorizations, started in [8].
Mots-clés : Cohen–Macaulay modules, matrix factorizations, curve singularities.
@article{ADM_2019_28_1_a5,
     author = {Y. A. Drozd and O. V. Tovpyha},
     title = {Cohen--Macaulay modules over the plane curve singularity of type $T_{44}${,~II}},
     journal = {Algebra and discrete mathematics},
     pages = {75--93},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a5/}
}
TY  - JOUR
AU  - Y. A. Drozd
AU  - O. V. Tovpyha
TI  - Cohen--Macaulay modules over the plane curve singularity of type $T_{44}$,~II
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 75
EP  - 93
VL  - 28
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a5/
LA  - en
ID  - ADM_2019_28_1_a5
ER  - 
%0 Journal Article
%A Y. A. Drozd
%A O. V. Tovpyha
%T Cohen--Macaulay modules over the plane curve singularity of type $T_{44}$,~II
%J Algebra and discrete mathematics
%D 2019
%P 75-93
%V 28
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a5/
%G en
%F ADM_2019_28_1_a5
Y. A. Drozd; O. V. Tovpyha. Cohen--Macaulay modules over the plane curve singularity of type $T_{44}$,~II. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 75-93. https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a5/

[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Singularities of Differentiable Maps, Nauka, Moscow, 1982 | MR

[2] Bondarenko V. M., “Representations of bundles of semichained sets and their applications”, Algebra i Analiz, 3:5 (1991), 38–61 | MR

[3] Burban I., Drozd Y., “Derived categories of nodal algebras”, J. Algebra, 272 (2004), 46–94 | DOI | MR | Zbl

[4] Burban I., Iyama O., Keller B, Reiten I., “Cluster tilting for one-dimensional hypersurface singularities”, Adv. Math., 217 (2008), 2443–2484 | DOI | MR | Zbl

[5] Dieterich E., “Lattices over curve singularities with large conductor”, Invent. Math., 114 (1993), 399–433 | DOI | MR | Zbl

[6] Drozd Y., “Reduction algorithm and representations of boxes and algebras”, C. R. Math. Acad. Sci. Soc. R. Can., 23 (2001), 97–125 | MR | Zbl

[7] Drozd Y., Greuel G.-M., “Cohen–Macaulay module type”, Compositio Math., 89 (1993), 315–338 | MR | Zbl

[8] Drozd Y., Tovpyha O., “On Cohen–Macaulay modules over the plane curve singularity of type $T_{44}$”, Arch. Math., 108 (2017), 569–579 | DOI | MR | Zbl

[9] Eisenbud D., “Homological algebra on a complete intersection, with an application to group representations”, Trans. Amer. Math. Soc., 260 (1980), 35–64 | DOI | MR | Zbl

[10] Gantmacher F. R., The Theory of Matrices, Fizmatlit, Moscow, 2004 | MR

[11] Ringel C. M., Tame Algebras, Lecture Notes in Math., 1099, Springer-Verlag, 1984 | DOI | MR | Zbl