Paley-type graphs of order a product of two distinct primes
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 44-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we initiate the study of Paley-type graphs ΓN modulo N=pq, where p, q are distinct primes of the form 4k+1. It is shown that ΓN is an edge-regular, symmetric, Eulerian and Hamiltonian graph. Also, the vertex connectivity, edge connectivity, diameter and girth of ΓN are studied and their relationship with the forms of p and q are discussed. Moreover, we specify the forms of primes for which ΓN is triangulated or triangle-free and provide some bounds (exact values in some particular cases) for the order of the automorphism group Aut(ΓN) of the graph ΓN, the chromatic number, the independence number, and the domination number of ΓN.
Mots-clés : Cayley graph, quadratic residue, Pythagorean prime.
@article{ADM_2019_28_1_a3,
     author = {Angsuman Das},
     title = {Paley-type graphs of order a product of two distinct primes},
     journal = {Algebra and discrete mathematics},
     pages = {44--59},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a3/}
}
TY  - JOUR
AU  - Angsuman Das
TI  - Paley-type graphs of order a product of two distinct primes
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 44
EP  - 59
VL  - 28
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a3/
LA  - en
ID  - ADM_2019_28_1_a3
ER  - 
%0 Journal Article
%A Angsuman Das
%T Paley-type graphs of order a product of two distinct primes
%J Algebra and discrete mathematics
%D 2019
%P 44-59
%V 28
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a3/
%G en
%F ADM_2019_28_1_a3
Angsuman Das. Paley-type graphs of order a product of two distinct primes. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 44-59. https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a3/

[1] W. Ananchuen, “On the adjacency properties of generalized Paley graphs”, Australas. J. Combin., 24 (2001), 129–147 | MR | Zbl

[2] W. Ananchuen and L. Caccetta, “Cubic and quadruple Paley graphs with the $n$-e.c. property”, Discrete Math., 306 (2006), 2954–2961 | DOI | MR | Zbl

[3] R. D. Baker, G. L. Ebert, J. Hemmeter and A. Woldar, “Maximal cliques in the Paley graph of square order”, J. Statist. Plann. Inference, 56:1 (1996), 33–38 | DOI | MR | Zbl

[4] S. D. Cohen, “Clique Numbers of Paley Graphs”, Quaest. Math., 11:2 (1988), 225–231 | DOI | MR | Zbl

[5] A. Das, Quadratic Residue Cayley Graphs on Composite Modulus, Mathematics and Computing, Springer Proceedings in Mathematics and Statistics, 139, 2015 | MR | Zbl

[6] A. N. Elsawy, Paley graphs and their generalizations, M. S. Thesis, Heinrich Heine University, Germany, 2009

[7] R. E. Giudici and A. A. Olivieri, “Quadratic modulo $2^n$ Cayley graphs”, Discrete Math., 215 (2000), 73–79 | DOI | MR | Zbl

[8] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, Springer, 2001 | DOI | MR | Zbl

[9] R. Hammack, W. Imrich and S. Klavzar, Handbook of Product Graphs, 2nd ed., CRC Press, 2011 | MR | Zbl

[10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998 | MR | Zbl

[11] T. K. Lim and C. E. Praeger, “On generalized Paley graphs and their automorphism groups”, Michigan Math. J., 58 (2009), 293–308 | MR

[12] E. Maistrelli and D. B. Penman, “Some colouring problems for Paley graph”, Discrete Math., 306:1 (2006), 99–106 | DOI | MR | Zbl

[13] T. Moran, I. Orlov and S. Richelson, Topology-Hiding Computation, Cryptology E-print Archive, 2014 Available at http://eprint.iacr.org/2014/1022.pdf

[14] K. H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984 | MR | Zbl

[15] D. B. West, Introduction to Graph Theory, Prentice Hall, 2001 | MR

[16] K. Wu, W. Su, H. Luo and X. Xu, “A generalization of generalized Paley graphs and new lower bounds for $R(3,q)$”, The Electronic Journal of Combinatorics, 17 (2010) | MR

[17] H. Zhang, “Independent Sets in Direct Products of Vertex-Transitive Graphs”, J. Combin. Theory Ser. B, 102:3 (2012), 832–838 | DOI | MR | Zbl