Exact sequences of graphs
Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 1-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, exact sequences of graphs are defined and investigated. Considering some functors on the category of graphs, we study some conditions to determine exactness of functors.
Mots-clés : graph category, graph exact sequence, graph functor.
@article{ADM_2019_28_1_a0,
     author = {Ahmad Abbasi and Ali Ramin},
     title = {Exact sequences of graphs},
     journal = {Algebra and discrete mathematics},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a0/}
}
TY  - JOUR
AU  - Ahmad Abbasi
AU  - Ali Ramin
TI  - Exact sequences of graphs
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 1
EP  - 19
VL  - 28
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a0/
LA  - en
ID  - ADM_2019_28_1_a0
ER  - 
%0 Journal Article
%A Ahmad Abbasi
%A Ali Ramin
%T Exact sequences of graphs
%J Algebra and discrete mathematics
%D 2019
%P 1-19
%V 28
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a0/
%G en
%F ADM_2019_28_1_a0
Ahmad Abbasi; Ali Ramin. Exact sequences of graphs. Algebra and discrete mathematics, Tome 28 (2019) no. 1, pp. 1-19. https://geodesic-test.mathdoc.fr/item/ADM_2019_28_1_a0/

[1] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, 2001 | MR | Zbl

[2] G. Hahn, C. Tardif, “Graph homomorphisms: structure and symmetry”, Graph symmetry (Montreal, PQ, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 497, Kluwer Acad. Publ., Dordrecht, 1997, 107–166 | MR | Zbl

[3] R. Hammack, W. Imrich, S.Klavžar, Handbook of Product Graphs, 2nd ed., CRC Press: Taylor and Francis Group, 2011 | MR | Zbl

[4] M. Kilp and U. Knauer, “Graph operations and categorical constructions”, Acta Comment. Univ. Tartu, Mathematica, 5 (200), 43–57 | MR | Zbl

[5] U. Knauer, Algebraic Graph Theory. Morphisms, monoids and matrices, de Gruyter Studies in Mathematics, 41, Walter de Gruyter Co., Berlin–Boston, 2011 | MR

[6] A. Ramin, A. Abbasi, “Torsion-unitary Cayley graph of an $R$-module as a Functor”, Quasigroups and Related Systems, 26 (2018), 121–138 | MR | Zbl

[7] L. R. Vermani, An Elementary Approach to Homological Algebra, Chapman Hall, New York, 2003 | MR | Zbl