On free vector balleans
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 70-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

A vector balleans is a vector space over R endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean (X,E), there exists the unique free vector ballean V(X,E) and describe the coarse structure of V(X,E). It is shown that normality of V(X,E) is equivalent to metrizability of (X,E).
Mots-clés : coarse structure, ballean, vector ballean, free vector ballean.
@article{ADM_2019_27_1_a7,
     author = {Igor Protasov and Ksenia Protasova},
     title = {On free vector balleans},
     journal = {Algebra and discrete mathematics},
     pages = {70--74},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a7/}
}
TY  - JOUR
AU  - Igor Protasov
AU  - Ksenia Protasova
TI  - On free vector balleans
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 70
EP  - 74
VL  - 27
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a7/
LA  - en
ID  - ADM_2019_27_1_a7
ER  - 
%0 Journal Article
%A Igor Protasov
%A Ksenia Protasova
%T On free vector balleans
%J Algebra and discrete mathematics
%D 2019
%P 70-74
%V 27
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a7/
%G en
%F ADM_2019_27_1_a7
Igor Protasov; Ksenia Protasova. On free vector balleans. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 70-74. https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a7/

[1] T. Banakh, A. Leiderman, “$\omega^{\omega} $-dominated function spaces and $\omega^{\omega}$-bases in free objects in topological algebra”, Topology Appl., 241 (2018), 203–241 | DOI | MR | Zbl

[2] T. Banakh, I. Protasov, The normality and bounded growth of balleans, arXiv: 1810.07979

[3] S. S. Gabriyelyan, A description of the topology of free vector spaces, arXiv: 1804.05199

[4] S. S. Gabriyelyan, S. A. Morris, “Free topological vector space”, Topology Appl., 223 (2017), 30–49 | DOI | MR | Zbl

[5] Ie. Lutsenko, I. V. Protasov, “Sketch of vector balleans”, Math. Stud., 31 (2009), 219–224 | MR | Zbl

[6] Amer. Math. Soc. Transl., 30 (1950), 11–88 | MR

[7] I. V. Protasov, “Normal ball structures”, Math. Stud., 20 (2003), 3–16 | MR | Zbl

[8] I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., 11, VNTL, Lviv, 2003 | MR | Zbl

[9] I. Protasov, K. Protasova, “Free coarse groups”, J. Group Theory | DOI | MR

[10] I. Protasov, M. Zarichnyi, General Asymptopogy, Math. Stud. Monogr., 12, VNTL, Lviv, 2007 | MR

[11] J. Roe, Lectures on Coarse Geometry, AMS University Lecture Ser., 31, Providence, RI, 2003 | DOI | MR | Zbl