Generalized classes of suborbital graphs for the congruence subgroups of the modular group
Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 20-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let Γ be the modular group. We extend a nontrivial Γ-invariant equivalence relation on Q^ to a general relation by replacing the group Γ0(n) by ΓK(n), and determine the suborbital graph Fu,nK, an extended concept of the graph Fu,n. We investigate several properties of the graph, such as, connectivity, forest conditions, and the relation between circuits of the graph and elliptic elements of the group ΓK(n). We also provide the discussion on suborbital graphs for conjugate subgroups of Γ.
Mots-clés : modular group, congruence subgroups, suborbital graphs.
@article{ADM_2019_27_1_a3,
     author = {Pradthana Jaipong and Wanchai Tapanyo},
     title = {Generalized classes of suborbital graphs for the congruence subgroups of the modular group},
     journal = {Algebra and discrete mathematics},
     pages = {20--36},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a3/}
}
TY  - JOUR
AU  - Pradthana Jaipong
AU  - Wanchai Tapanyo
TI  - Generalized classes of suborbital graphs for the congruence subgroups of the modular group
JO  - Algebra and discrete mathematics
PY  - 2019
SP  - 20
EP  - 36
VL  - 27
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a3/
LA  - en
ID  - ADM_2019_27_1_a3
ER  - 
%0 Journal Article
%A Pradthana Jaipong
%A Wanchai Tapanyo
%T Generalized classes of suborbital graphs for the congruence subgroups of the modular group
%J Algebra and discrete mathematics
%D 2019
%P 20-36
%V 27
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a3/
%G en
%F ADM_2019_27_1_a3
Pradthana Jaipong; Wanchai Tapanyo. Generalized classes of suborbital graphs for the congruence subgroups of the modular group. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 20-36. https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a3/

[1] M. Akbas, “On suborbital graphs for the modular group”, Bull. London Math. Soc., 33:6 (2001), 647–652 | DOI | MR | Zbl

[2] Mehmet Akbaş, Tuncay Kör, Yavuz Kesicioğlu, “Disconnectedness of the subgraph $F^3$ for the group $\Gamma^3$”, J. Inequal. Appl., 2013:283 (2013) | MR

[3] Murat Beşenk, Bahad{\i}r Ö. Güler, Ali H. De{ğ}er, Yavuz Kesicioğlu, “Circuit lengths of graphs for the Picard group”, J. Inequal. Appl., 2013:106 (2013) | MR

[4] Ali H. De{ğ}er, Murat Be{ş}enk, Bahad{\i}r Ö. Güler, “On suborbital graphs and related continued fractions”, Appl. Math. Comput., 218:3 (2011), 746–750 | MR | Zbl

[5] Bahadir O. Guler, Serkan Kader, Murat Besenk, “On suborbital graphs of the congruence subgroup $\Gamma_0(N)$”, Int. J. Comput. Math. Sci., 2:3 (2008), 153–156 | MR

[6] Bahad{\i}r Ö. Güler, Murat Beşenk, Yavuz Kesicioğlu, Ali Hikmet Değer, “Suborbital graphs for the group $\Gamma^2$”, Hacettepe Journal of Mathematics and Statistics, 44:5 (2015), 1033–1044 | MR | Zbl

[7] Bahad{\i}r Ö. Güler, Serkan Kader, “On the action of $\Gamma^0(N)$ on $\widehat{\mathbb Q}$”, Note Mat., 30:2 (2010), 141–148 | MR

[8] G. A. Jones, D. Singerman, K. Wicks, “The modular group and generalized Farey graphs”, Groups (St. Andrews 1989), v. 2, London Math. Soc. Lecture Note, 160, Cambridge Univ. Press, Cambridge, 1991, 316–338 | MR

[9] Serkan Kader, Bahad{\i}r Ö. Güler, “On suborbital graphs for the extended modular group $\widehat\Gamma$”, Graphs Combin., 29:6 (2013), 1813–1825 | DOI | MR | Zbl

[10] I. N. Kamuti, E. B. Inyangala, J. K. Rimberia, “Action of $\Gamma_\infty$ on $\mathbb{Z}$ and the corresponding suborbital graphs”, Int. Math. Forum, 7:30 (2012), 1483–1490 | MR | Zbl

[11] Yavuz Kesicioğlu, Mehmet Akbaş, Murat Beşenk, “Connectedness of a suborbital graph for congruence subgroups”, J. Inequal. Appl., 2013:117 (2013) | MR

[12] Refik Keskin, “On suborbital graphs for some Hecke groups”, Discrete Math., 234 (2001), 53–64 | DOI | MR | Zbl

[13] R. Sarma, S. Kushwaha, R. Krishnan, “Continued fractions arising from $\mathcal{F}_{1,2}$”, J. Number Theory, 154 (2015), 179–200 | DOI | MR | Zbl

[14] Charles C. Sims, “Graphs and finite permutation groups”, Mathematische Zeitschrift, 95:1 (1967), 76–86 | DOI | MR | Zbl