Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2019_27_1_a3, author = {Pradthana Jaipong and Wanchai Tapanyo}, title = {Generalized classes of suborbital graphs for the congruence subgroups of the modular group}, journal = {Algebra and discrete mathematics}, pages = {20--36}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2019}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a3/} }
TY - JOUR AU - Pradthana Jaipong AU - Wanchai Tapanyo TI - Generalized classes of suborbital graphs for the congruence subgroups of the modular group JO - Algebra and discrete mathematics PY - 2019 SP - 20 EP - 36 VL - 27 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a3/ LA - en ID - ADM_2019_27_1_a3 ER -
%0 Journal Article %A Pradthana Jaipong %A Wanchai Tapanyo %T Generalized classes of suborbital graphs for the congruence subgroups of the modular group %J Algebra and discrete mathematics %D 2019 %P 20-36 %V 27 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a3/ %G en %F ADM_2019_27_1_a3
Pradthana Jaipong; Wanchai Tapanyo. Generalized classes of suborbital graphs for the congruence subgroups of the modular group. Algebra and discrete mathematics, Tome 27 (2019) no. 1, pp. 20-36. https://geodesic-test.mathdoc.fr/item/ADM_2019_27_1_a3/
[1] M. Akbas, “On suborbital graphs for the modular group”, Bull. London Math. Soc., 33:6 (2001), 647–652 | DOI | MR | Zbl
[2] Mehmet Akbaş, Tuncay Kör, Yavuz Kesicioğlu, “Disconnectedness of the subgraph $F^3$ for the group $\Gamma^3$”, J. Inequal. Appl., 2013:283 (2013) | MR
[3] Murat Beşenk, Bahad{\i}r Ö. Güler, Ali H. De{ğ}er, Yavuz Kesicioğlu, “Circuit lengths of graphs for the Picard group”, J. Inequal. Appl., 2013:106 (2013) | MR
[4] Ali H. De{ğ}er, Murat Be{ş}enk, Bahad{\i}r Ö. Güler, “On suborbital graphs and related continued fractions”, Appl. Math. Comput., 218:3 (2011), 746–750 | MR | Zbl
[5] Bahadir O. Guler, Serkan Kader, Murat Besenk, “On suborbital graphs of the congruence subgroup $\Gamma_0(N)$”, Int. J. Comput. Math. Sci., 2:3 (2008), 153–156 | MR
[6] Bahad{\i}r Ö. Güler, Murat Beşenk, Yavuz Kesicioğlu, Ali Hikmet Değer, “Suborbital graphs for the group $\Gamma^2$”, Hacettepe Journal of Mathematics and Statistics, 44:5 (2015), 1033–1044 | MR | Zbl
[7] Bahad{\i}r Ö. Güler, Serkan Kader, “On the action of $\Gamma^0(N)$ on $\widehat{\mathbb Q}$”, Note Mat., 30:2 (2010), 141–148 | MR
[8] G. A. Jones, D. Singerman, K. Wicks, “The modular group and generalized Farey graphs”, Groups (St. Andrews 1989), v. 2, London Math. Soc. Lecture Note, 160, Cambridge Univ. Press, Cambridge, 1991, 316–338 | MR
[9] Serkan Kader, Bahad{\i}r Ö. Güler, “On suborbital graphs for the extended modular group $\widehat\Gamma$”, Graphs Combin., 29:6 (2013), 1813–1825 | DOI | MR | Zbl
[10] I. N. Kamuti, E. B. Inyangala, J. K. Rimberia, “Action of $\Gamma_\infty$ on $\mathbb{Z}$ and the corresponding suborbital graphs”, Int. Math. Forum, 7:30 (2012), 1483–1490 | MR | Zbl
[11] Yavuz Kesicioğlu, Mehmet Akbaş, Murat Beşenk, “Connectedness of a suborbital graph for congruence subgroups”, J. Inequal. Appl., 2013:117 (2013) | MR
[12] Refik Keskin, “On suborbital graphs for some Hecke groups”, Discrete Math., 234 (2001), 53–64 | DOI | MR | Zbl
[13] R. Sarma, S. Kushwaha, R. Krishnan, “Continued fractions arising from $\mathcal{F}_{1,2}$”, J. Number Theory, 154 (2015), 179–200 | DOI | MR | Zbl
[14] Charles C. Sims, “Graphs and finite permutation groups”, Mathematische Zeitschrift, 95:1 (1967), 76–86 | DOI | MR | Zbl