Spectral properties of partial automorphisms of~a~binary rooted tree
Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 280-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study asymptotics of the spectral measure of a randomly chosen partial automorphism of a rooted tree. To every partial automorphism x we assign its action matrix Ax. It is shown that the uniform distribution on eigenvalues of Ax converges weakly in probability to δ0 as n, where δ0 is the delta measure concentrated at 0.
Keywords: semigroup, eigenvalues, delta measure.
Mots-clés : partial automorphism, random matrix
@article{ADM_2018_26_2_a6,
     author = {Eugenia Kochubinska},
     title = {Spectral properties of partial automorphisms of~a~binary rooted tree},
     journal = {Algebra and discrete mathematics},
     pages = {280--289},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_2_a6/}
}
TY  - JOUR
AU  - Eugenia Kochubinska
TI  - Spectral properties of partial automorphisms of~a~binary rooted tree
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 280
EP  - 289
VL  - 26
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_2_a6/
LA  - en
ID  - ADM_2018_26_2_a6
ER  - 
%0 Journal Article
%A Eugenia Kochubinska
%T Spectral properties of partial automorphisms of~a~binary rooted tree
%J Algebra and discrete mathematics
%D 2018
%P 280-289
%V 26
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_2_a6/
%G en
%F ADM_2018_26_2_a6
Eugenia Kochubinska. Spectral properties of partial automorphisms of~a~binary rooted tree. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 280-289. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_2_a6/

[1] L. Bartholdi, R. Grigorchuk, “On the Hecke type operators related to some fractal groups”, Proc. Steklov Inst. Math., 231 (2000), 1–41 | MR | Zbl

[2] S. N. Evans, “Eigenvaluse of random wreath products”, Electron. J. Probability, 7:9 (2002), 1–15 | MR

[3] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups. An Introduction, Springer, 2008 | MR

[4] E. Kochubinska, “Combinatorics of partial wreath power of finite inverse symmetric semigroup $\mathcal{IS}_d$”, Algebra Discrete Math., 6:1 (2007), 49–61 | MR

[5] E. Kochubinska, “On cross-sections of partial wreath product of inverse semigroups”, Electron. Notes Discrete Math., 28 (2007), 379–386 | DOI | MR | Zbl

[6] J. D. P. Meldrum, Wreath product of groups and semigroups, Pitman Monographs and Surveys in Pure and Applied Mathematics, 74, Longman Group Ltd., Harlow, 1995 | MR