Endomorphisms of Cayley digraphs of~rectangular groups
Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 153-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let Cay(S,A) denote the Cayley digraph of the semigroup S with respect to the set A, where A is any subset of S. The function f:Cay(S,A)Cay(S,A) is called an endomorphism of Cay(S,A) if for each (x,y)E(Cay(S,A)) implies (f(x),f(y))E(Cay(S,A)) as well, where E(Cay(S,A)) is an arc set of Cay(S,A). We characterize the endomorphisms of Cayley digraphs of rectangular groups G×L×R, where the connection sets are in the form of A=K×P×T.
Mots-clés : Cayley digraphs, rectangular groups, endomorphisms.
@article{ADM_2018_26_2_a0,
     author = {Srichan Arworn and Boyko Gyurov and Nuttawoot Nupo and Sayan Panma},
     title = {Endomorphisms of {Cayley} digraphs of~rectangular groups},
     journal = {Algebra and discrete mathematics},
     pages = {153--169},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_2_a0/}
}
TY  - JOUR
AU  - Srichan Arworn
AU  - Boyko Gyurov
AU  - Nuttawoot Nupo
AU  - Sayan Panma
TI  - Endomorphisms of Cayley digraphs of~rectangular groups
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 153
EP  - 169
VL  - 26
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_2_a0/
LA  - en
ID  - ADM_2018_26_2_a0
ER  - 
%0 Journal Article
%A Srichan Arworn
%A Boyko Gyurov
%A Nuttawoot Nupo
%A Sayan Panma
%T Endomorphisms of Cayley digraphs of~rectangular groups
%J Algebra and discrete mathematics
%D 2018
%P 153-169
%V 26
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_2_a0/
%G en
%F ADM_2018_26_2_a0
Srichan Arworn; Boyko Gyurov; Nuttawoot Nupo; Sayan Panma. Endomorphisms of Cayley digraphs of~rectangular groups. Algebra and discrete mathematics, Tome 26 (2018) no. 2, pp. 153-169. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_2_a0/

[1] B. L. Bauslaugh, Homomorphisms of infinite directed graphs, Ph.D. Thesis, Simon Fraser University, 1994, 132 pp. | MR

[2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993 | MR

[3] J. A. Bondy, U. S. R. Murty, Graph Theory with applications, Elsevier, New York, 1976 | MR | Zbl

[4] P. J. Cameron, Graph homomorphisms, Combinatorics Study Group Notes, 2006

[5] J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995 | MR | Zbl

[6] A. V. Kelarev, “On undirected Cayley graphs”, Austral. J. Combin., 25 (2002), 73–78 | MR | Zbl

[7] B. Khosravi, “On Cayley graphs of left groups”, Houston J. Math., 35:3 (2009), 745–755 | MR | Zbl

[8] B. Khosravi and B. Khosravi, “A characterization of Cayley graphs of Brandt semigroups”, Bull. Malays. Math. Sci. Soc., 35 (2012), 399–410 | MR | Zbl

[9] B. Khosravi, M. Mahmoudi, “On Cayley graphs of rectangular groups”, Discrete Math., 310 (2010), 804–811 | DOI | MR | Zbl

[10] U. Knauer, Algebraic graph theory, W. de Gruyter, Berlin, 2011 | MR | Zbl

[11] C. H. Li, “Isomorphisms of connected Cayley graphs”, Graphs Combin., 14 (1998), 37–44 | DOI | MR

[12] C. H. Li, “On isomorphisms of finite Cayley graphs—a survey”, Discrete Math., 256 (2002), 301–334 | DOI | MR | Zbl

[13] J. Meksawang, S. Panma, “Isomorphism conditions for Cayley graphs of rectangular groups”, Bull. Malays. Math. Sci. Soc., 39 (2016), 29–41 | MR

[14] S. Panma, “Characterization of Cayley graphs of rectangular groups”, Thai J. Math., 8:3 (2010), 535–543 | MR | Zbl

[15] S. Panma, U. Knauer, Sr. Arworn, “On transitive Cayley graphs of right (left) groups and of Clifford semigroups”, Thai J. Math., 2 (2004), 183–195 | Zbl

[16] S. Panma, U. Knauer, Sr. Arworn, “On transitive Cayley graphs of strong semilattice of right (left) groups”, Discrete Math., 309 (2009), 5393–5403 | DOI | MR | Zbl

[17] M. Ruangnai, S. Panma, Sr. Arworn, “On Cayley isomorphisms of left and right groups”, Int. J. of Pure and Applied Math., 80:4 (2012), 561–571 | Zbl

[18] D. Shurbert, An introduction to graph homomorphisms, University of Puget Sound, 2013, 12 pp.