Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2018_26_1_a9, author = {Leonid A. Kurdachenko and Nikolaj N. Semko and Igor Ya. Subbotin}, title = {On the anticommutativity in {Leibniz} algebras}, journal = {Algebra and discrete mathematics}, pages = {97--109}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2018}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a9/} }
TY - JOUR AU - Leonid A. Kurdachenko AU - Nikolaj N. Semko AU - Igor Ya. Subbotin TI - On the anticommutativity in Leibniz algebras JO - Algebra and discrete mathematics PY - 2018 SP - 97 EP - 109 VL - 26 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a9/ LA - en ID - ADM_2018_26_1_a9 ER -
Leonid A. Kurdachenko; Nikolaj N. Semko; Igor Ya. Subbotin. On the anticommutativity in Leibniz algebras. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 97-109. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a9/
[1] V. A. Chupordya, L. A. Kurdachenko, I. Ya. Subbotin, “On some minimal Leibniz algebras”, Journal of Algebra and its Applications, 16 (2017) | DOI | MR
[2] J. M. Casas, E. Khmaladze, “On Lie-central extension of Leibniz algebra”, RACSAM, 111 (2017), 39–56 | DOI | MR | Zbl
[3] Ph. Hall, “Finite-by-nilpotent groups”, Proc. Cambridge Philos. Soc., 52 (1956), 611–616 | DOI | MR | Zbl
[4] V. V. Kirichenko, L. A. Kurdachenko, A. A. Pypka, I. Ya. Subbotin, “Some aspects of Leibniz algebra theory”, Algebra and Discrete Mathematics, 24:1 (2017), 113–145 | MR
[5] L. A. Kurdachenko, J. Otal, A. A. Pypka, “Relationships between factors of canonical central series of Leibniz algebras”, European Journal of Mathematics, 2 (2016), 565–577 | DOI | MR | Zbl
[6] L. A. Kurdachenko, I. Ya. Subbotin, “A brief history of an important classical theorem”, Advances in Group Theory and Applications, 2 (2016), 121–124 | MR | Zbl
[7] L. A. Kurdachenko, N. N. Semko, I. Ya. Subbotin, “From groups to Leibniz algebras: common approaches, parallel results”, Advances in Group Theory and Applications, 5 (2018), 1–31 | MR | Zbl
[8] B. H. Neumann, “Groups with finite classes of conjugate elements”, Proc. London Math. Soc., 1 (1951), 178–187 | DOI | MR | Zbl