On finite groups with Hall normally embedded Schmidt subgroups
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 90-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup H of a finite group G is said to be Hall normally embedded in G if there is a normal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a non-nilpotent finite group whose all proper subgroups are nilpotent. In this paper, we prove that if each Schmidt subgroup of a finite group G is Hall normally embedded in G, then the derived subgroup of G is nilpotent.
Mots-clés : finite group, Hall subgroup, normal subgroup, derived subgroup, nilpotent subgroup.
@article{ADM_2018_26_1_a8,
     author = {Viktoryia N. Knyahina and Victor S. Monakhov},
     title = {On finite groups with {Hall} normally embedded {Schmidt} subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {90--96},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a8/}
}
TY  - JOUR
AU  - Viktoryia N. Knyahina
AU  - Victor S. Monakhov
TI  - On finite groups with Hall normally embedded Schmidt subgroups
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 90
EP  - 96
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a8/
LA  - en
ID  - ADM_2018_26_1_a8
ER  - 
%0 Journal Article
%A Viktoryia N. Knyahina
%A Victor S. Monakhov
%T On finite groups with Hall normally embedded Schmidt subgroups
%J Algebra and discrete mathematics
%D 2018
%P 90-96
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a8/
%G en
%F ADM_2018_26_1_a8
Viktoryia N. Knyahina; Victor S. Monakhov. On finite groups with Hall normally embedded Schmidt subgroups. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 90-96. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a8/

[1] V. S. Monakhov, Introduction to the Theory of Finite groups and their Classes, Vyshejshaja shkola, 2006 (Russian)

[2] B. Huppert, Endliche Gruppen, v. I, Springer, 1967 | MR | Zbl

[3] O. Y. Schmidt, “Groups whose all subgroups are special”, Mat. Sb., 31 (1924), 366–372 (Russian)

[4] N. F. Kuzennyi, S. S. Levishchenko, “Finite Shmidt's groups and their generalizations”, Ukrainian Math. J., 43:7–8 (1991), 898–904 | MR

[5] V. S. Monakhov, “The Schmidt groups, its existence and some applications”, Tr. Ukrain. Math. Congr.–2001, Section 1, Kiev, 2002, 81–90 (Russian) | MR | Zbl

[6] V. N. Kniahina, V. S. Monakhov, “On finite groups with some subnormal Schmidt subgroups”, Sib. Math. J., 4:6 (2004), 1075–1079 | MR

[7] V. A. Vedernikov, “Finite groups with subnormal Schmidt subgroups”, Algebra and Logic, 46:6 (2007), 363–372 | DOI | MR | Zbl

[8] Kh. A. Al-Sharo, A. N. Skiba, “On finite groups with $\sigma$-subnormal Schmidt subgroups”, Commun. Algebra, 45 (2017), 4158–4165 | DOI | MR | Zbl

[9] V. N. Kniahina, V. S. Monakhov, “Finite groups with Hall Schmidt subgroups”, Publ. Math. Debrecen, 81:3–4 (2012), 341–350 | DOI | MR | Zbl

[10] Li Shirong, He Jum, Nong Guoping, Zhou Longqiao, “On Hall normally embedded subgroups of finite groups”, Communications in Algebra, 37 (2009), 3360–3367 | DOI | MR | Zbl

[11] Li Shirong, Liu Jianjun, “On Hall subnormally embedded and generalized nilpotent groups”, J. of Algebra, 388 (2013), 1–9 | DOI | MR | Zbl

[12] V. S. Monakhov, V. N. Kniahina, “On Hall embedded subgroups of finite groups”, J. Group Theory, 18:4 (2015), 565–568 | MR | Zbl

[13] A. Ballester-Bolinches, J. Cossey, Qiao ShouHong, “On Hall subnormally embedded subgroups of finite groups”, Monatsh. Math., 181 (2016), 753–760 | DOI | MR | Zbl

[14] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, 1992 | MR

[15] M. Suzuki, Group Theory, v. II, Springer, 1986 | MR | Zbl