On regular torsionless S-posets
Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 76-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper shall be concerned with the notion of regular torsionless in the category of S-posets. Besides elementary basic properties of regular torsionless S-posets, we consider cyclic regular torsionless S-posets and also study when regular torsionless property is preserved under coproducts. Then we characterize pomonoids over which all free or projective S-posets are regular torsionless. Finally, we present conditions on S which follow if all regular torsionless S-posets are principally weakly po-flat, weakly po-flat, strongly flat, or projective.
Mots-clés : S-posets, pomonoids, regular torsionless, projective, flat.
@article{ADM_2018_26_1_a7,
     author = {Roghaieh Khosravi},
     title = {On regular torsionless $S$-posets},
     journal = {Algebra and discrete mathematics},
     pages = {76--89},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a7/}
}
TY  - JOUR
AU  - Roghaieh Khosravi
TI  - On regular torsionless $S$-posets
JO  - Algebra and discrete mathematics
PY  - 2018
SP  - 76
EP  - 89
VL  - 26
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a7/
LA  - en
ID  - ADM_2018_26_1_a7
ER  - 
%0 Journal Article
%A Roghaieh Khosravi
%T On regular torsionless $S$-posets
%J Algebra and discrete mathematics
%D 2018
%P 76-89
%V 26
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a7/
%G en
%F ADM_2018_26_1_a7
Roghaieh Khosravi. On regular torsionless $S$-posets. Algebra and discrete mathematics, Tome 26 (2018) no. 1, pp. 76-89. https://geodesic-test.mathdoc.fr/item/ADM_2018_26_1_a7/

[1] S. Bulman-Fleming, D. Gutermuth, A. Glimour, and M. Kilp, “Flatness properties of $S$-posets”, Comm. Algebra, 34 (2006), 1291–1317 | DOI | MR | Zbl

[2] S. Bulman-Fleming, and M. Mahmoudi, “The category of $S$-posets”, Semigroup Forum, 71 (2005), 443–461 | DOI | MR | Zbl

[3] M. Kilp, U. Knauer, A. Mikhalev, Monoids, Acts and Categories, W. de Gruyter, Berlin, 2000 | MR | Zbl

[4] M. Kilp, U. Knauer, “On Torsionless and Dence Acts”, Semigroup Forum, 63 (2001), 396–414 | DOI | MR | Zbl

[5] R. Khosravi, “On direct products of $S$-posets satisfying flatness properties”, Turk. J. Math., 38 (2014), 79–86 | DOI | MR | Zbl

[6] H. S. Qiao, F. Li, “The flatness properties of $S$-poset $A(I)$ and Rees factor $S$-posets”, Semigroup Forum, 77 (2008), 306–315 | DOI | MR | Zbl

[7] H. S. Qiao, F. Li, “When all $S$-posets are principally weakly flat”, Semigroup Forum, 75 (2007), 536–542 | DOI | MR

[8] X. Shi, “Ordered left pp monoid”, Math. Slovaca, 64:6 (2014), 1357–1368 | DOI | MR | Zbl

[9] X. Shi, “On flatness properties of cyclic $S$-posets”, Semigroup Forum, 77 (2008), 248–266 | DOI | MR | Zbl

[10] X. Shi, “Strongly flat and po-flat $S$-posets”, Comm. Algebra, 33 (2005), 4515–4531 | DOI | MR | Zbl

[11] X. Shi, Z. Liu, F. Wang, and S. Bulman-Fleming, “Indecomposable, projective, and flat $S$-posets”, Comm. Algebra, 33 (2005), 235–251 | DOI | MR | Zbl